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Abstract—With the continuous rise in the popularity of An-
droid mobile devices, automated testing of apps has become more
important than ever. Android apps are event-driven programs.
Unfortunately, generating all possible types of events by interact-
ing with an app’s interface is challenging for an automated testing
approach. Callback-driven testing eliminates the need for event
generation by directly invoking app callbacks. However, existing
callback-driven testing techniques assume prior knowledge of An-
droid callbacks, and they rely on a human expert, who is familiar
with the Android API, to write stub code that prepares callback
arguments before invocation. Since the Android API is very large
and keeps evolving, prior techniques could only support a small
fraction of callbacks present in the Android framework.

In this work, we introduce COLUMBUS, a callback-driven test-
ing technique that employs two strategies to eliminate the need
for human involvement: (i) it automatically identifies callbacks by
simultaneously analyzing both the Android framework and the
app under test; (ii) it uses a combination of under-constrained
symbolic execution (primitive arguments), and type-guided
dynamic heap introspection (object arguments) to generate valid
and effective inputs. Lastly, COLUMBUS integrates two novel
feedback mechanisms—data dependency and crash-guidance—
during testing to increase the likelihood of triggering crashes and
maximizing coverage. In our evaluation, COLUMBUS outperforms
state-of-the-art model-driven, checkpoint-based, and callback-
driven testing tools both in terms of crashes and coverage.

I. INTRODUCTION

Android is the most popular mobile operating system, with

2.8B active users and a global market share of 75% as of 2021 [2].

Android apps cater to diverse users’ needs, such as emailing,

banking, gaming, etc. The Google Play Store, the official An-

droid app market, witnessed enormous growth—it currently hosts

2.9M apps, and more than 100K apps are added every month [1].

In order to provide a smooth user experience, these apps need to

be thoroughly tested before developers push them to the market.

Modern Android apps use rich user interface (UI) and complex

app logic, thus making automated exploration challenging.

Android apps are event-driven programs, i.e., each interaction

with the UI of the app generates an event, which drives the

app through different states. Therefore, synthesizing a correct

sequence of events is essential to efficiently explore the state

space of an app. Many prior techniques rely on UI testing

frameworks [8], [10], [46], [41], [17], [48], [22] to exercise the

app by generating appropriate events. However, a large class

of events is widget-specific, and requires multiple user actions

to be taken in a specific order at specific UI coordinates. As

we explain in Section III, the onDateChanged event of the

DatePickerDialogwidget is one such example. Generating

such events deterministically is challenging for a UI-based test-

ing tool, unless it has been equipped with the knowledge of how

to generate all the correct events. Given the variety of the Android

widgets, and the different types of events they support, this is

non-trivial. To address this, callback-driven approaches [39]

leverage the fact that when a UI event is triggered, the associated

event handler, also known as callback, is executed. Callbacks

are the methods in the app typically invoked by the Android

framework on the occurrence of an event, e.g., click on a

widget. Callback-driven techniques call those callbacks directly—

essentially eliminating the need for event generation altogether.

Existing callback-driven approaches suffer from two main

limitations. (L1) They assume the knowledge of both the An-

droid callbacks and the APIs to determine what to call and how,

respectively. Given an app, the first challenge is to identify its

callbacks. For that, existing tools maintain a fixed and often small

list of supported callbacks. Once a callback is identified, it has to

be invoked with arguments that match the types that the callback

expects. Callbacks accept two types of arguments: primitive, e.g.,
int, and float, or objects. Object arguments are harder to deal

with. Prior techniques depend on a human expert for writing the

necessary driver code, which would leverage widget-specific

Android APIs to retrieve live objects from the app context, so

that those can be supplied as arguments. Since adding support

for a callback requires a non-trivial manual effort, it is hard

to extend the support for all the callbacks in the framework.

Quite understandably, while there are approximately 19,647
callbacks in Android 4.2 [16], the state-of-the-art callback-

driven testing tool EHBDROID [39] supports only 58 of them.

(L2) Apps accept user-supplied data as input, e.g., text. Only

generating event sequences, which existing tools focus on, is not

enough, because certain functionalities may only be reachable

under specific input. For example, a payroll app calculates tax

differently depending on the income of an employee.

This paper presents COLUMBUS, an Android app testing

technique that addresses both the challenges. To address L1,

COLUMBUS adopts a two-phase approach. First, we statically

identify all the callbacks present in the app (what to call).

Specifically, our callback discovery module statically extracts all
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the callback signatures L supported by the Android framework.

Since an app has to override a framework callback to provide its

own implementation, we use L to identify the callback imple-

mentations present in the app. Once callbacks are identified, then

we dynamically prepare arguments (how to call) to invoke them

with. Unlike previous techniques that rely on manually-written,

callback-specific driver code to generate object arguments, we

resort to a hybrid approach. Our exploration module performs a

dynamic introspection of the app’s heap at run-time, followed by

a type-guided object filtering to supply appropriate arguments to

the callback. This callback discovery and argument generation

strategies together insulate COLUMBUS from the complexity of

the Android API and obviate the need for any prior knowledge.

To address L2, we leverage the fact that many user inputs are

of primitive types, and often appear as the arguments to the call-

backs. Therefore, the argument generation module symbolizes

the primitive arguments of a callback, and performs an under-

constrained symbolic execution to generate the possible values of

those arguments to drive the execution along all paths. Symbolic

execution is scoped within a single callback instead of the entire

app to maintain a balance between precision and scalability.

In addition to tackling those two limitations, we integrate

two novel feedback mechanisms into our exploration loop. (i)
The callback dependency module passes on statically-identified

data-dependencies between callbacks as feedback, which enables

COLUMBUS to generate callback sequences that increase the

likelihood of triggering crashes due to uninitialized objects, e.g.,
NullPointerException. (ii) We design a crash-guided
dynamic scoring mechanism that gradually deprioritizes

crash-inducing paths in the app to drive the exploration towards

unexplored code. In effect, COLUMBUS is incentivized to

discover more crashes than rediscovering the already found ones.

We evaluated COLUMBUS on 60 apps of the AndroTest [37]

benchmark, and top 140 real-world apps from the Google

Play Store. Compared to the state-of-the-art model-based tech-

niques STOAT [41] and APE [22], checkpoint-based technique

TIMEMACHINE [19], and callback-driven technique EHB-

DROID [39], COLUMBUS achieves 12%, 5%, 6%, and 31%
more in average coverage, and discovers 4.42, 1.23, 1.57, and

5.48 times more crashes on the AndroTest apps, respectively.

COLUMBUS is also able to find 70 crashes in 54 real-world apps.

In summary, this paper makes the following contributions:

Callback exploration. We propose a callback-driven Android

app testing approach by presenting (i) a generic technique to ex-

tract all the callbacks present in an app (Section IV-A), and (ii) an

analysis based on under-constrained symbolic execution (primi-

tive arguments) (Section IV-B), and type-guided dynamic object

filtering for generating valid arguments to invoke callbacks.

Feedback mechanism. Further, we make the app exploration

systematic by integrating two novel feedback mechanisms: (i)
a data dependency feedback that increases the probability of

triggering bugs (Section IV-C) due to uninitialized variables, and

(ii) a crash-guided dynamic scoring mechanism that prevents

us from rediscovering the same bugs (Section IV-D).

Tool & evaluation. We implement the proposed technique in

a practical tool called COLUMBUS, and we make it publicly

available [9]. Our evaluation demonstrates that COLUMBUS out-

performs the state-of-the-art tools both in terms of code coverage

and the number of unique crashes that it identifies (Section V).

II. BACKGROUND

Android events. Android apps are event-driven programs. That

is, apps behave as state machines, and events cause a transition

from one state to the other. An event is generated in response to

one or more user actions (UI events), or by Android itself (system

events). Examples of UI events include click, drag, pan,

pinch, zoom, etc. Modern Android devices are equipped with

peripherals, such as, Bluetooth and WiFi, and sensors like motion

sensors and accelerometers. Any change in the state of these

devices is detected by the OS, which then generates a system

event to notify “interested” apps. Examples of system events are

Bluetooth disconnected, phone tilted, and low battery level.

Based on the number of actions needed to generate an event,

we define two types of events: primitive and composite. Primitive

events are either system events or UI events generated due to

a single action. For example, MotionEvent (ME) reports the

movement of an input device like a mouse, pen, finger, trackball,

or KeyEvent reports key and button related actions. A compos-

ite event consists of multiple primitive ones, which are sequenced

with strict spatial and temporal requirements. Say, we want to

drag an object from point p1, and drop it at point pn along the tra-

jectory [p1,p2,p3,...,pn]. In order to programmatically generate

a drag event, the following sequence (temporal) of primitive

events need to be fired at those exact coordinates (spatial):

ME.ACTION_DOWN (p1)→ {ME.ACTION_MOVE (pi) | 2 ≤
i≤ (n−1)}→ME.ACTION_UP (pn). Without the support for

a composite event, it is nearly impossible for a UI testing tool to

generate most of them just ‘by chance’. To make matter worse,

numerous such composite events are widget-specific, e.g., the

DateChanged event recognized by DatePickerDialog.

Therefore, adding support for individual events in a UI testing

tool is nearly impossible.

Android callbacks. An Android callback, also known as an

event handler, is a piece of code that the framework invokes

when a specific event takes place, for example; the onClick
callback is called when a click event occurs. Typically,

the framework only provides empty callbacks, which an app

selectively overrides to respond to the respective events. When

an event is generated, it is broken down into Messages, which

are then put into a MessageQueue managed by the Looper,

the entity that runs the message loop. The Looper processes the

Messages in first-in-first-out order, and calls the associated

callbacks. While invoking a callback, the framework supplies the

appropriate arguments, which can be of two types—primitive,

e.g., int, float, etc., or object, i.e., an instance of a class.

Android activity: An activity is a UI element that acts as a

container of other UI elements. It often presents itself in the

form of a window. Activities are managed by maintaining an

activity stack. When a new activity starts, it is placed on the

top of the stack, while the previous one is paused, and remains
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below the current one in the stack. A paused activity does not

come to the foreground again until the current activity exits.

An activity transitions through different states of its lifecycle
as a user navigates through an app. Lifecycle callbacks, e.g.,
onCreate, onPause, onResume, are the ones associated

with such lifecycle events.

III. MOTIVATION AND CHALLENGES

This section introduces a motivating example, the challenges

it presents to the state-of-the-art callback-driven app testing

tools, and how we tackle them.

The code in Figure 1 shows three callbacks that an Android

app might implement. The callback functions are executed when

the user interacts with specific UI elements, i.e., clicks on a list

item, clicks on a button, and sets a date using a DatePick-
erDialog (Figure 2), respectively. UI-based testing tools [8]

generate events, e.g., clicks, to interact with the UI of such apps.

However, these tools are not widget-aware, meaning that, they

are unable to systematically generate composite events unless

they already know how to generate them. For example, the

following events need to be generated in an exact sequence, on

specific UI elements, to call the onDateChanged callback—

(i) DatePickerDialog widget is clicked to bring up the

spinner control, (ii) the day/month/year is changed by clicking

on the up/down arrows, and (iii) the Set button is clicked. It is

unlikely for a UI-based testing tool to be able to deterministically

generate this event sequence without any guidance. Moreover,

to set a particular date, the up/down arrows need to be clicked

a specific number of times—which is hard as well. To overcome

this limitation, callback-driven techniques [39] invokes the

callback, e.g., onDateChanged, directly bypassing the UI

layer altogether. While callback-driven testing shows promise,

it still suffers from the following limitations.

Identifying callbacks. The first step of callback-driven testing

is identifying the callbacks. Unfortunately, the set of callbacks

supported by the Android framework is huge. While previous

research [16] identified approximately 19, 647 callbacks in

Android 4.2; EHBDROID, the state-of-the-art callback-driven

testing tool, supports only 58 callbacks. COLUMBUS statically

analyzes the app and the Android framework together to address

this issue (Section IV-A).

Providing callback arguments. Callbacks accept either prim-

itive arguments or objects. The primitive arguments are often in-

volved in path conditions within the callback. Without the correct

value of such primitives, part of the callback may never be exer-

cised. In Figure 1, the Toastmessage appears only on a specific

date. Existing callback-based testing tools use a set of predefined

values to invoke callbacks. Therefore, Line 19 will possibly never

be explored. COLUMBUS symbolizes primitive arguments and

employs under-constrained symbolic execution to infer values to

make larger part of the callback code reachable (Section IV-B).

For object arguments, such as, the ListView and View
arguments of the onListItemClick callback in Figure 1,

callback-driven tools use the Android API (by statically

instrumenting the app) to retrieve correct objects from the app

context, as shown in Figure 3 (Line 2 and Line 7). However,

1 protected void onListItemClick
(ListView l, View v, int position, long id) {

2 File f = (File)(mList.get(id).get(ITEM_KEY_FILE));
3 if (f.isFile()) {
4 mSelectedFile = f;
5 showDialog(DIALOG_IMPORT_FILE);
6 }
7 }
8

9 public void
onClick(DialogInterface dialog, int whichButton) {

10 File f = mSelectedFile;
11 Intent i = new Intent(mContext, myActivity.class);
12 Uri u = Uri.fromFile(f);
13 i.setData(u);
14 startActivity(i);
15 }
16

17 public void onDateChanged
(DatePicker view, int year, int month, int day) {

18 if (day == 15 && month == 6 && year == 2020)
19 Toast.makeText(context, "Success!", ...).show();
20 }

Fig. 1: Code containing three callbacks. Their data dependencies
( ) and checks on the arguments ( ) are highlighted.

Fig. 2: A DatePick-
erDialog widget

1 void onCreate(Bundle bundle) {
2 ListView lv = getListView();
3 }
4

5 void ehbTest() {
6 for (int i=0; i<lv.size(); i++) {
7 View v = lv.getChildAt(i);
8 long id = lv.getAdapter()
9 .getItemId(i);

10 this.onListItemClick(lv,v,i,id);
11 }
12 }

Fig. 3: EHBDROID instrumenta-

tion for onListItemClick()

this approach is not scalable, as the number of callbacks in

the Android framework is huge, and the tool requires adding

explicit support for all the arguments of all the callbacks. Instead,

COLUMBUS retrieves live objects from the app heap at runtime,

and then applies type-guided object filtering to provide the

correct arguments (Section IV-B). Type information comes from

a one-time, static, pre-processing phase.

Data dependency feedback. Variables are often shared among

multiple callbacks. Shared data introduces data dependencies,

which an app should either enforce by restricting available

UI actions, or handle by placing a sanity check. In Figure 1,

both the onClick and onListItemClick callbacks

use the same variable mSelectedFile. Specifically,

onListItemClick opens a file, and sets the file handle

mSelectedFile (Line 4), which onClick uses in Line 10.

This implies that onListItemClick has to be invoked before

onClick, otherwise the onClick method would generate

a NullPointerException. COLUMBUS statically infers

such data dependencies and passes the same as feedback during

testing. While synthesizing a callback sequence, COLUMBUS

attempts to violate the expected order to increase the likelihood

of inducing crashes (Section IV-C).

IV. THE COLUMBUS FRAMEWORK

In this work, we propose COLUMBUS, a framework to

test Android apps by directly invoking their callbacks. For a

given Android app, COLUMBUS first identifies its callbacks

1383



Fig. 4: Overview of COLUMBUS with reference to the motivating

example in Figure 1

(Section IV-A). It then obtains the primitive argument values

that correspond to different execution paths in these call-

backs (Section IV-B) and identifies inter-callback dependencies

(Section IV-C). Finally, our tool invokes the identified callbacks—

(i) in orders that initially violate (to increase the chances of

triggering uninitialized data-related bugs), and later respect

their dependencies, (ii) with their expected arguments during

the exploration (Section IV-D). COLUMBUS keeps track of the

callback-defining classes explored during the app execution,

and gives higher priority to exploring classes that have been less

explored. Figure 4 depicts the high-level workflow of our system.

A. Callback discovery

Every Android app defines its own set of callbacks. Though

state-of-the-art approaches [39] resorted to a predefined set of

callbacks, the Android framework contains thousands [16] of

callbacks, and the number is constantly increasing. In order

to facilitate effective app exploration, in this work, we present

an approach to automated callback discovery. COLUMBUS’s

callback identification is presented in Algorithm 1. At a high

level, our callback discovery approach first statically analyzes

the framework (Function AndroidFrameworkAnalysis)

followed by an analysis of the app under test (Function App-
Analysis), and outputs a list of callbacks present in the app.

Android framework analysis. Our analysis is based on two

observations. (i) As discussed in Section II, in order to perform

the intended action once an event is generated, an app needs

to override the respective callback present in the Android

framework. To be overridden, a callback needs to be declared

as either a protected, or a public method within the framework.

(ii) Moreover, at runtime, callbacks are typically invoked within

the framework through a series of internal method calls once

an event is generated—meaning that, callbacks have caller(s)

within the framework.

COLUMBUS first constructs the framework’s callgraph CGf .

To build the call graph, COLUMBUS performs intra-procedural

type inference [35] to determine the possible dynamic types

of the object on which a method is called. When this fails,

COLUMBUS then over-approximates the possible targets as

Algorithm 1: Static callback identification

1 Function AndroidFrameworkAnalysis
Input : Android framework JAR
Output : Classes with callback candidates Δ

2 Δ←{}
3 CGf←GetCallGraph(JAR)
4 CHf←GetClassHierarchy(JAR)
5 foreach class cf ∈GetClassesFromJar(JAR) do
6 Mf←∅
7 foreach method mf ∈GetMethodsFromClass(cf ) do
8 if IsPublicOrProtected(mf ) then
9 if GetCallers(cf ,mf ,CGf ) �=∅ then

10 Mf←Mf∪mf

11 end
12 end
13 end
14 Δ[cf ]←Δ[cf ]∪Mf

15 end
16 foreach (cf ,Mf )∈Δ do
17 foreach subclass c′f ∈GetSubClasses(cf ) do
18 M ′

f←Δ[c′f ]; M
′
f←M ′

f∪Mf ; Δ[c′f ]←M ′
f

19 end
20 end
21 return Δ,CHf

22 Function AppAnalysis
Input : App’s APK, Framework classes with

callback candidates Δ, Framework’s class hierarchy CHf

Output : Application callbacks CB
23 CB←∅
24 foreach class ca∈GetClassesFromApk(APK) do
25 ClassAndItsParents←ca∪GetSuperClasses(ca)
26 foreach cpa∈ClassAndItsParents do
27 foreach (cf ,Mf )∈Δ do
28 if cpa extends cf∨cpa implements cf then
29 foreach ma∈GetClassMethods(cpa) do
30 foreach mf ∈Mf do
31 if IsCompatible(mf ,ma) then
32 CB←CB∪ma

33 end
34 end
35 end
36 end
37 end
38 end
39 end
40 return CB

all the subclasses of its static type. Now, for every method

mf in a framework class cf , COLUMBUS considers mf as a

potential callback (Lines 7 − −13) if—(i) mf is declared as

either protected, or public, and (ii) mf has at least one caller

in CGf . At the end, we compute a mapping Δ that maps each

class cf to their potential callbacks. Each callback mf is a tuple,

which consists of the defining class cf , the method name, and

the types of its arguments. Now, this mapping Δ is incomplete,

because a class can inherit callbacks from its superclasses as

well. Therefore, COLUMBUS computes the complete list of

potential callbacks for every cf by walking up the class hierarchy

to consolidate superclass callbacks, too (Lines 16−−20). The

updated callback mapping Δ and the class hierarchy information

CHf are returned as the output. Note that COLUMBUS performs

the framework analysis once per framework.

The above analysis is inspired by EdgeMiner [16]. The main

goal of EdgeMiner is to detect framework callbacks, and using

that to discover the registration methods within the framework.

However, the end goal of Columbus is to detect application level

callbacks by leveraging the framework callbacks.

Android app analysis. The goal of this phase is to find whether

any app class method ma is a valid overriding method of the

framework class callback mf . In order to override a callback
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within an app, the app class ca needs to either extend or

implement the corresponding callback-defining class cf of the

Android framework. For example, in Figure 1, to override the

onListItemClick callback, the app class needs to extend

the ListActivity framework class. COLUMBUS identifies

such pairs of classes (cf , ca) by statically analyzing the app.

In the next step, it checks whether any app method ma ∈ ca
has the same name and the same number of arguments as any

framework method mf ∈cf , and the arguments of ma are type-
compatible with those of mf (Lines 29−−35). We call a type t1
to be compatible with another type t2, if either t1= t2, or t1 is a

subclass of t2 according to the class hierarchy. To determine type

compatibility, COLUMBUS constructs the full class hierarchy by

unifying (⊕) the framework class hierarchy CHf with the app

class hierarchy CHa. Let A→B denote that A is a superclass of

B. Now, if the relations H1=A→B and H2=B→C appear in

CHa and CHf , respectively, then H1⊕H2=A→B→C. Fi-

nally, we obtain the set of potential callbacks in an app. Our anal-

ysis would discover all three functions onListItemClick,

onClick, and onDateChanged in Figure 1 as callbacks.

Identifying callbacks by analyzing either the app, or the

framework alone is challenging. Since a callback is invoked by

the framework, the callback methods do not have incoming edges

visible from the call graph of the app. However, an analysis

relying only on this fact alone will generate false positives—

because, it could detect a non-callback method as a callback due

to the inherent incompleteness of Java call graphs [36]. Similarly,

our framework analysis is over-approximated in a way that will

definitely contain the callbacks, but non-callbacks methods,

too. Intuitively, therefore we ‘intersect’ the framework callback

candidates and app methods to determine the true callbacks.

During this phase, we can encounter methods of a generic

Android framework class Object, that are declared as public,

and can therefore be overridden by the corresponding application-

level classes inheriting the Object class. The number of such

callbacks appearing as part of the final callback list was negligi-

ble (around 3%). We do not consider such methods as callbacks.

B. Generating arguments for callbacks

In order to invoke a callback, we need to provide argument val-

ues conforming to the correct types. In case of GUI-action-driven

exploration strategies, the framework provides these arguments,

which are derived from the events resulting from the GUI actions.

Therefore, to invoke callbacks without relying on GUI actions,

COLUMBUS needs to tackle the challenge of generating argu-

ments for these callbacks, with a goal to explore the paths within

a callback resulting in faster coverage and better crash discovery.

A callback argument can be one of two types: primitive or

reference. For each type, COLUMBUS uses different strategies

to generate the corresponding arguments.

1) Primitive type arguments.: Primitive type arguments,

e.g., integer, long, string, and boolean, are typically

involved in program paths that can only be explored

with a specific set of values. For instance, Line 19 of the

onDateChange callback in Figure 1 will get executed only
if the integer arguments day, month, and year are equal

to 15, 6, and 2020. Therefore, to effectively explore all the

paths in such a callback without resorting to a computationally

expensive random search, COLUMBUS needs to provide these

specific set of values to the callback during invocation. In this

case, COLUMBUS symbolizes respective callback arguments,

and performs an under-constrained symbolic execution (until

termination, or time-out) to generate concrete values.
Precisely, COLUMBUS starts the symbolic execution at the

entry point of each of the callbacks, and collects constraints on

the arguments corresponding to each of the execution paths. It

then solves these constraints and generates concrete argument

values, which when provided as arguments to the callback during

invocation, result in exercising those paths within the callback.

During symbolic execution, we track constraints on objects that

modify the program state, such as (i) callback arguments, and

(ii) API return values.

Callback arguments. COLUMBUS executes the callback with

symbolic and unconstrained arguments. It then collects the

constraints in each of the execution paths that involve operations

on the symbolic arguments. For example, if one of the arguments

is an object, and during execution, one of its fields is set to 5,

COLUMBUS’s symbolic execution engine will automatically add

a constraint stating that the specific attribute needs to be equal

to 5 (to follow a particular program path of interest).

API calls. COLUMBUS’s symbolic execution engine generates

summaries for common functions, for example, the Java runtime

function exit(). These summaries capture the side effects of

these APIs that modify the program state. For APIs without a

summary, we return a fresh symbolic value conforming to the

return type of the API.
COLUMBUS’s symbolic execution engine is capable of

generating concrete values of integer, float, boolean,

and constant string types.
2) Reference type arguments: Reference type argument

objects frequently represent UI elements where a user

performs certain actions. In Figure 1, when a user clicks on

AlertDialog (a subclass object of DialogInterface),

the framework invokes the onClick callback with an argument

object of type AlertDialog. Therefore, to invoke the

onClick callback without relying on the Android framework,

we need to provide an object of type DialogInterface, or

a subclass of DialogInterface—as an argument.

App heap search. During the app exploration (Section IV-D), as

and when new Activities are visited, these object instances

are created in the app heap. Therefore, in order to invoke a

callback that requires reference type arguments, COLUMBUS

monitors the app heap by dynamically instrumenting the app

under test. In many cases, the argument type present in the

callback signature is not the one created in the app heap. In

Figure 1, the onClick callback has an argument of type

DialogInterface. However, the object created will be of

type AlertDialog, a subclass of DialogInterface. To

account for this scenario, i.e., if an object instance of a reference

type inferred from the callback signature is not available in the

app heap, COLUMBUS searches for object instance(s) that is a

subclass of the required type.
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Custom object creation. It may still happen that no object

instances of the required type or its subclass are found in the

heap. For example, certain types of objects required as a callback

argument, e.g., KeyEvent, and MotionEvent, that are

created by the Android framework only when it registers touch,

or key-press on UI elements. Therefore, in order to invoke such

callbacks, COLUMBUS leverages Java reflection. Specifically,

for such a reference, COLUMBUS creates the object using its

public constructor. If the constructor expects primitive type

arguments, COLUMBUS uses either a random value, or a value

from a pre-defined set as the argument. For example, to create

KeyEvent, or MotionEvent objects, COLUMBUS uses

pre-defined values as they should be valid screen coordinates

in order to successfully explore the callback. If a constructor

expects reference type objects, COLUMBUS either finds these

objects through app heap search, or creates recursively through

Java reflection. For example, if we were to create an object of

type A which has a constructor that accepts an object of type

B, then we create objects bottom up (i.e., first B, then A). In

case multiple such constructors exist, COLUMBUS picks the one

which requires the least number of reference type arguments.

C. Inter-callback dependency

Callbacks within an app can share variables resulting in

read-write data dependencies. As discussed in Section III, for

onListItemClick and onClick callbacks (Figure 1),

prioritizing dependency-violating order, i.e., invoking onClick
before onListItemClick, brings us faster to a crash

discovery. Whereas invoking the callbacks in the dependency-

respecting order allows for a better code coverage. For example,

the execution of the Lines 13 − −14 in onClick happens

only if the reference mSelectedFile accessed at Line 10 is

defined by a prior execution of onListItemClick.

Based on this observation, COLUMBUS computes callback

pairs having shared variable dependencies by performing a field-

insensitive analysis of the app. The intuition is to first compute

a set of class variables vars that are not initialized through a de-
fault initializer. The default initializers are the methods that get

automatically invoked whenever a class or activity gets created,

e.g., the life cycle methods of an activity, class constructors, etc.
These variables vars are our target candidates, since they are de-

fined and accessed only through callbacks. Next, for every such

variable var ∈ vars, COLUMBUS searches for callback pairs

(cb1,cb2) where one of them reads (R) var, and the other writes

(W) var. The output of this phase will be a set of variables with

their dependent callback pairs. For the example in Figure 1, the

output will be {mSelectedFile, (‘R’,onClick), (‘W’,
onListItemClick)}.

These dependency pairs are used as feedback during the

exploration phase detailed in Section IV-D. In order to accelerate

crash discovery, COLUMBUS implements a weighted-score

based exploration strategy, which initially prioritizes executing

callbacks that write to variables over the callbacks that read from

the same variables—inducing the dependency violating callback

invocation orders. However, during the exploration, COLUMBUS

dynamically adjusts the scores, e.g., penalizes the callbacks

that frequently result in a crash, or prioritizes the callbacks that

are executed less frequently, in order to explore newer or less

explored program paths as well.

D. Callback-guided exploration

To explore an app under test, we first statically obtain its

callbacks (Section IV-A), their dependencies (Section IV-C),

and the primitive argument values (Section IV-B). Then,

COLUMBUS spawns the app, dynamically instruments it to

inspect the app heap, and starts exploring its functionalities.

COLUMBUS invokes a callback whenever an instance of the

activity, or the class defining the callback appears in the

app’s heap. If the callback expects reference type arguments,

COLUMBUS then generates such argument objects using the

strategy detailed in Section IV-B. Algorithm 2 gives an overview

of our app exploration strategy. COLUMBUS’s exploration

strategy is composed of the following components:

Activity monitor. As the app is being explored, two kinds of

entities get created, or destroyed in the heap: (i) activities and

related UI element objects, and (ii) regular class objects, as

the side-effect of calling a callback that instantiates the class.

The activity monitor records such events by monitoring the

invocation of the lifecycle callbacks of the activities, and the

class constructors. For example, invocation of onCreate()
signals an activity creation, and onDestroy() is invoked

when an activity is destroyed. The activity monitor maintains an

activity stack S by pushing an activity to S when a new activity

is created, and popping an activity off S when it is destroyed.

Therefore, the most recently created activity, which we call as

the live activity, always remains at the top of S.

The app is explored in a depth-first manner, and runs in

continuous cycles. For a live activity act, the activity monitor

retrieves all the class objects newClasses created in the app

heap (Line 18), passes it on to the selector for choosing the

next callback cb, which is then executed by the executor. The

function getNewClasses() returns only those classes for

which at least one callback is still unexplored. If a callback

creates a new live activity act′, the activity monitor puts act on

hold, and switches to act′. When all the callbacks of an activity

or its associated classes have been executed, the activity monitor

destroys the activity, removes it from S (Lines 19−−22), and

starts exploring the next live activity. One testing cycle ends, and

the next one begins when S becomes empty.

Selector. The selector module receives the candidate classes

newClasses to be explored from the activity monitor, and

chooses a callback cb to be executed next (Line 24). While

choosing cb, it considers the class weights ClW , callback

weights CbW , inter-callback dependencies Dep, and the visited

status explored of the callbacks. The explored map is cleared

when a testing cycle begins. All the weights are initially set

to zero, and are dynamically adjusted during the exploration

based on how frequently the classes and the callbacks have been

explored. Similarly, when a callback is explored, the explored
map is updated (Line 26).

To choose a callback, the selector employs multiple strategies

in the following order: (i) In the beginning, when none of the
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callback is explored, the selector uses Dep to choose the callback

cb with the read (R) dependency, and its defining class cl. (ii) The

selector consults the explored map to prioritize unexplored call-

backs over the explored ones. (iii) A class or callback with lower

weight (ClW or CbW ) has been explored the least; therefore it is

prioritized next for execution. The tie among multiple unexplored

classes, or callbacks with the same weight is broken randomly.

Algorithm 2: Callback driven exploration

1 Function CallbackExploration
Input : Application callbacks AC, their dependencies Dep,

class hierarchical information CHf and CHa, duration t
Output : Crash dumps crashes

2 crashes←∅, explored←{}, testingCycle←0
3 CbW←∅ // callback weights
4 ClW←∅ // class weights
5 foreach callback cb∈AC do
6 cl←GetclassDefiningMethod(cb)
7 CbW←CbW∪(cl,cb,0.0)
8 ClW←ClW∪(cl,0.0)
9 end

10 while until t is reached do
11 spawnApp ()
12 testingCycle← testingCycle+1
13 foreach callback cb∈AC do
14 explored[cb]←false
15 end
16 while until no new activity left to explore do
17 act←getLiveActivity()
18 newClasses←getNewClasses(act,explored)
19 if newClasses=∅ then
20 RemoveActivity(act)
21 go to Line 16
22 end
23 cl←getNextClass(newClasses∪act,ClW,Dep)
24 cb←getNextCallback(cl,explored,CbW,Dep)
25 if cb=∅ then
26 explored←explored−(cb,false)∪(cb,true)
27 go to Line 16
28 end
29 allargs←generateArguments(cl)
30 foreach args∈allargs do
31 inst←getInstance(cl)
32 newCrash←ExecuteCallback(inst,cb,args)
33 if newCrash �=∅ then
34 crashes←crashes∪newCrash
35 UpdateAndPenalizeWeights(ClW,CbW,cl,cb)
36 restartApp () and go to Line 10
37 end
38 else
39 UpdateWeights(ClW,CbW,cl,cb)
40 end
41 end
42 end
43 end
44 return crashes

Executor. The executor executes the callback selected by the

selector. The executor searches the app heap for an instance of

a class, or an activity that overrides the callback (Line 31). If an

instance is found, the executor generates the arguments for the

callback respecting their types (Section IV-B). However, an argu-

ment can have multiple possible values executing different paths

(primitive), or depending on the availability of objects in the

heap (reference). The executor, therefore, schedules the callback

for execution for each combination of such inferred values. After

each execution, the class weight for a class cl and the callback

weight for a callback cb are updated as shown in Figure 5.

Intuitively, the executor updates the weights to reflect what

percentage of callbacks are executed with respect to the total

number of possible invocations—since a crash, or a creation

CbWcb :− CbWcb+
ext

sch
sch← number of scheduled executions of cb
ext ← number of executions of cb at time t

ClWcl :− avg(CWcb)∀cb∈cl

Fig. 5: New class and callback weights after each execution

of new activity may interrupt the processing of the rest of

the scheduled executions. The class weights are accordingly

adjusted such that the least explored class, and its callbacks are

prioritized to be executed the next time the activity comes live.

Crash detector. After the execution of a callback, the crash

detector monitors whether it results in a crash of the app. We

do not want to rediscover the same crash repeatedly. Therefore,

if a crash happens, the UpdateAndPenalizeWeights()
(Line 35) function updates the class weights to deprioritize

the callback cb, and its defining class cl—the callback weight

CbWcb is increased by δ (an empirically determined constant),

and accordingly the class weight ClWcl is adjusted. The idea

is to gradually increase the callback weight in order to account

for the case when only a specific set of argument values results

in a crash, and all other values should still be able to explore

the callback. Therefore, instead of not choosing the callback at

all, the selector deprioritizes the callback for some time.

V. EVALUATION

In our evaluation, we aim at answering the following research

questions: RQ1. How does COLUMBUS compare with the

state-of-the-art testing tools in terms of both code coverage

and discovered crashes? RQ2. How effective is COLUMBUS in

finding crashes in popular, real-world apps? RQ3. What is the

benefit of leveraging dependency feedback?

A. Experimental setup

Dataset. To answer RQ1 and RQ3, we used AndroTest [37],

a collection of 68 apps. This dataset has become the de facto

standard benchmark for Android app testing, and it has been

used in the evaluation of a large number of tools [37], [41],

[31], [19], [29], [33], [13], [11], [18], [46], [49], [30]. However,

we had to remove 8 apps that were not fully compatible with

Android 9 (which is the environment we used for COLUMBUS).

For example, the ListView in the netcounter app does

not appear in Android 9. Therefore, we used the remaining 60
apps for all our experiments.

For RQ2, we created a dataset of popular, real-world apps.

We will refer to this dataset as the real-world dataset. To build

this dataset, we first compiled a list of Google Play Store [6]

apps with a minimum of 500,000 installs and a user rating of

at least 4.5 stars. Then, we collected first 140 apps compatible

with FRIDA instrumentation. As we show in Table II, these apps

are quite diverse and belong to 14 broad categories.

Environment. Our experiments were conducted on a system

with an Intel(R) Core(TM) i9-10885H @ 2.40GHz processor

(16 cores), 128GB of memory, and 1TB of solid-state drive
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(relevant for the snapshot save and restore mechanism used

by TIMEMACHINE), running a 64-bit Ubuntu 20.04 operating

system. For testing, we used 8 Google Pixel 3a phones running

Android 9 (Pie, API level 28), with the Internet and Bluetooth

connectivity enabled. We did not create any accounts for those

apps that allow user logins. We ran each tool for 3 hours on each

app, repeated each experiment 5 times, and averaged out the

results to minimize the effect of any inherent randomness. Before

testing each app, we first brought the phones to a clean-slate
state by wiping its sdcard contents, and then pushed the

sdcard files used by STOAT in their experiment to the phones.

All the tools except TIMEMACHINE, which requires a virtual

machine (VM) to operate, were tested on real hardware (phone).

Pre-exploration. Before the dynamic exploration could begin,

COLUMBUS prepares an app by running the first three static

pre-processing phases. We provide relevant results for the 60
apps of the AndroTest dataset: The callback discovery module

identified a total of 30,682 and 4,991 callbacks in the Android

framework and the apps, respectively. Out of 4,991 app callbacks

discovered, 1,566 callbacks had at least one primitive argument,

thus necessitating the invocation of the argument generation
module. With a timeout of 5 minutes, the argument generation

succeeded for 1,332 callbacks, while it timed out for the remain-

ing 234 callbacks. Additionally, 4,147 callbacks have at least

one reference type argument, and in total 4,857 reference type

arguments. Out of them, 4,650 objects were always found on the

heap, and the remaining 207 objects needed to be created. Finally,

the callback dependency module discovered a total of 2,456
dependency relations between 975 variables across all the apps.

Coverage and crash collection. We used EMMA [4] to collect

statement coverage. The coverage data was collected every

minute for all tested tools. EMMA injects its own instrumentation

code into the apps. Unfortunately, its coverage reports do

include coverage data from its own packages, which can either

inflate, or deflate the overall coverage. Therefore, we excluded

EMMA-specific classes from the coverage calculation.

We detect crashes by parsing (i) LOGCAT [7] logs fetched by

the log watcher, a long-running process that streams logs from

the devices (phones) in real-time, and (ii) logs of the crashes

captured by the FRIDA server. We used the widely adopted

practice of computing the stack hash to determine the uniqueness
of crashes. Crashes that do not contain the app’s package

name were filtered out. For FRIDA reports, we occasionally

observed that certain crashes that originate from the dynamic

instrumentation contain an app’s package name. Therefore, we

manually inspected and removed those irrelevant crashes after

the initial package-name-based filtering. Then, we normalized

the stack traces for the remaining crashes by removing irrelevant

and ephemeral information, e.g., timestamp, process id (PID),

etc. Finally, we compute hashes over these sanitized stack traces.

Implementation. We implemented the first three phases of

our analysis, viz., callback identification, callback dependency

discovery, and primitive argument generation using the

ANGR [3] binary analysis framework. All these phases are

performed offline, before the testing begins on the device.

Apps Line coverage Crashes

ST EH AP TM CB CBwd ST EH AP TM CB CBwd

mileage 38 23 58 40 60 57 2 0 15 9 4 4

bomber 61 56 66 97 88 87 0 0 0 0 0 0

mirrored 31 16 38 46 47 47 0 0 0 1 1 1

batterydog 59 5 72 73 72 72 0 0 0 1 0 0

triangle 90 91 90 91 91 91 0 0 0 0 1 1

translate 46 29 48 48 49 49 1 1 1 0 1 1

anymemo 26 18 50 42 52 46 2 1 6 6 7 7

zooborns 18 17 19 25 26 26 3 0 3 3 1 1

qsettings 40 23 50 40 47 46 1 1 1 0 1 0

wchart 57 24 32 51 85 83 2 1 0 0 3 3

addi 17 16 21 19 18 18 1 0 8 1 3 3

LNM 49 3 34 48 50 50 4 0 4 7 2 1

gestures 32 32 32 50 78 78 0 0 0 0 0 0

MNV 35 13 64 42 68 68 2 1 4 4 1 1

wikipedia 24 21 25 31 19 19 0 0 0 0 0 0

dialer 66 53 65 40 73 73 1 1 1 3 2 2

photost 24 9 26 28 12 12 2 1 1 3 3 3

battery 92 55 55 93 88 88 0 0 0 3 0 0

aCal 18 8 28 29 22 19 3 0 5 3 3 1

tomdroid 55 24 57 53 61 59 0 0 4 0 2 2

RMP 82 87 83 65 92 92 1 0 0 1 2 2

SpriteText 62 63 62 63 61 59 0 0 0 0 0 0

LPG 63 37 89 82 0 0 0 0 0 0 0 0

ringdroid 0 40 42 23 47 47 1 2 4 2 2 2

sftp 11 5 15 12 18 18 0 0 0 0 3 1

PWMG 3 6 7 16 6 6 0 1 0 0 2 2

fbubble 49 49 56 82 74 72 0 0 0 0 3 3

myexp 55 1 33 46 65 63 0 0 0 1 7 7

sanity 13 8 26 27 36 35 1 0 2 1 2 1

SMT 87 2 87 63 87 85 0 0 0 0 0 0

alogcat 65 33 73 79 60 53 0 0 0 0 2 2

worldclock 97 90 98 94 95 95 1 1 0 1 2 2

mlife 87 35 86 84 92 92 0 0 0 0 2 2

lbuilder 22 28 28 26 37 35 0 1 0 0 4 4

CDT 63 31 65 85 87 87 0 0 0 0 0 0

bites 26 15 42 36 54 54 2 0 5 8 3 3

multisms 40 26 74 57 78 78 0 1 0 1 1 1

yahtzee 69 3 46 6 51 46 1 0 3 1 3 3

nectroid 40 27 44 38 46 46 0 0 0 2 2 2

anycut 70 12 71 71 66 66 0 2 0 0 3 3

PMM 66 27 62 56 65 62 4 0 11 3 4 4

manpages 40 20 54 77 78 74 0 0 0 1 3 3

zoffcc 18 15 16 20 16 16 3 0 4 1 4 4

amazed 62 64 76 52 84 84 0 0 1 1 1 1

alarmclock 72 15 76 68 71 71 6 0 4 4 5 5

hndroid 13 5 11 8 15 15 0 1 0 2 2 2

sboard 100 58 100 100 100 100 0 0 0 0 0 0

hotdeath 16 63 73 75 80 76 1 3 2 0 5 5

dalvik-exp 23 6 72 70 64 64 1 0 5 3 4 4

jamendo 10 13 28 9 30 30 5 3 0 0 5 5

importcont 57 2 53 42 78 74 0 0 0 0 1 1

blokish 36 35 49 52 45 45 0 0 2 0 2 2

Book-cat 4 4 33 35 38 38 0 1 2 4 4 0

Templaro 55 76 87 60 86 83 0 1 0 2 3 3

DAC 53 48 76 88 94 91 0 0 0 0 0 0

Agrep 37 8 58 63 61 58 0 0 7 2 7 7

Syncmypix 15 18 21 25 26 26 1 1 0 1 3 3

tippytipper 72 9 86 84 89 89 0 0 0 0 2 2

WHAMS 80 0 77 69 79 79 0 0 0 1 1 1

A2dp 29 14 40 45 47 42 6 0 6 0 3 3

Avg/Sum 46 27 53 52 58 57 58 25 111 87 137 126

TABLE I: Coverage and the number of crashes reported by all

the tools in the AndroTest dataset. ST: STOAT, EH: EHBDROID,

AP: APE, TM: TIMEMACHINE, CB: COLUMBUS, CBwd:

COLUMBUS without dependency feedback

For exploration, the final phase, we leveraged the FRIDA [5]

dynamic instrumentation toolkit.

B. Experimental results

1) Performance on benchmark apps: To investigate how

our technique performs with respect to prior work, we use

the AndroTest benchmark apps. Specifically, we compared

the achieved code coverage and the number of crashes

found by COLUMBUS with the state-of-the-art model-based

techniques STOAT [41] and APE [22], checkpoint-based

technique TIMEMACHINE [19], and callback-driven technique

EHBDROID [39]. Unfortunately, we could not make the

publicly available version of EHBDROID work on our test apps

due to the incompatibility of their instrumentation module with

our test subjects. Instead, we implemented their testing strategies

by modifying COLUMBUS in three ways: (i) we consider only

those 58 callbacks supported by EHBDROID, (ii) we disabled

dependency and crash guidance, and (iii) we restricted primitive
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(a) <1K (30) (b) [1K,3K) (17) (c) ≥3K (13) (d) all (60)

Fig. 6: Coverage (Y-axis) achieved on AndroTest, grouped by

app size (Lines of Code). Number of apps in a size group is

indicated in parentheses. ‘x’ denotes the mean of a boxplot

argument values to those used by EHBDROID instead of the

values computed by our argument generation module.
In Table I, we present the statement coverage achieved as

well as the crashes triggered by all tools on the benchmark apps.

Coverage. We find that COLUMBUS achieves higher code

coverage than STOAT, EHBDROID, APE and TIMEMACHINE

for 45, 55, 41, and 41 apps, respectively. Moreover,

COLUMBUS achieves the best coverage in 36 apps, followed

by TIMEMACHINE (16 apps), APE (10 apps), STOAT (5 apps),

and EHBDROID (2 apps). To gain an overall view of the tools’

performances, we report the average code coverage, achieved

by each tool across all apps, in the last row of Table I. As

can be seen, COLUMBUS attains the highest (58%) coverage

on average, followed by APE (53%), TIMEMACHINE (52%),

STOAT (46%), and EHBDROID (27%). Figure 8 shows the

progression of coverage over time for all the tools averaged

across all the benchmark apps. Starting from the 5th minute,

the coverage achieved by COLUMBUS exceeds other tools. Until

approximately the 20th minute, the coverage increases at a fairly

fast rate, after that, it starts to slow down. Further, the boxplot

in Figure 6 shows the spread of the coverage achieved by all

the tools grouped by the size of the apps. We use group sizes

identical to the ones used in previous work [19]. As the figure

shows, COLUMBUS exhibits significant improvement over other

tools in terms of coverage for all size groups.
The improvement in coverage for COLUMBUS can be

attributed to its systematic exploration of the callbacks. While

UI-based techniques struggle to generate complex events and

appropriate user input, COLUMBUS sidesteps this problem

by directly calling the callbacks and supplying argument

values (computed by the argument generation module) that

are likely to explore additional code paths. In addition, the

crash-guidance feedback helps COLUMBUS to make the best use

of the time-budget by preventing the exploration from getting

stuck at individual crashes for a long time.
Figure 7 shows a code snippet from the RandomMu-

sicPlayer app from AndroTest. This example shows an

interesting case where COLUMBUS naturally enjoys clear

benefits over previous, more “heavyweight” techniques that use

symbolic execution [13], and other UI-testing tools. To explore

all the branches (if conditions), a UI-based tool would need

to click on all corresponding buttons, which is challenging.

1 p u b l i c vo id o n C l i c k ( View t a r g e t ) {
2 / / Send i n t e n t a c c o r d i n g t o t h e b u t t o n c l i c k e d
3 i f ( t a r g e t == mPlayBut ton ) {
4 s t a r t S e r v i c e ( new I n t e n t ( M u s i c S e r v i c e . ACTION PLAY) ) ;

5 } e l s e i f ( t a r g e t == mPauseBut ton ) {
6 s t a r t S e r v i c e ( new I n t e n t ( M u s i c S e r v i c e . ACTION PAUSE) ) ;

7 } e l s e i f ( t a r g e t == mSkipBut ton ) {
8 s t a r t S e r v i c e ( new I n t e n t ( M u s i c S e r v i c e . ACTION SKIP ) ) ;

9 } e l s e i f ( t a r g e t == mRewindButton ) {
10 s t a r t S e r v i c e ( new I n t e n t ( M u s i c S e r v i c e . ACTION REWIND) ) ;

11 } e l s e i f ( t a r g e t == mStopBut ton ) {
12 s t a r t S e r v i c e ( new I n t e n t ( M u s i c S e r v i c e . ACTION STOP) ) ;

13 } e l s e i f ( t a r g e t == m E j e c t B u t t o n ) {
14 showUr lDia log ( ) ;

15 }
16 }

Fig. 7: Code snippet (redacted) from RandomMusicPlayer

ACTEVE [13] solves this problem by concolically executing

the app together with an instrumented version of the Android

framework. Since, in our case, COLUMBUS introspects the app

heap to retrieve live objects, we observed the coverage of this app

quickly going up, because COLUMBUS invokes the onClick
callback with all the button Views already present in the heap.

To better understand the challenges COLUMBUS faces during

exploration, we manually examined 10 of those apps where

COLUMBUS did not achieve the best coverage. We summarize

our findings next: (i) For callbacks where the symbolic execution

timed out, the argument generation module could not return

any useful value. As a result, COLUMBUS fell back to its default

strategy of trying out random argument values, which negatively

affected the coverage. (ii) There exist callbacks that are

stateful. That is, the application logic is conditioned on class
variables. Note that COLUMBUS is not state-aware, therefore this

challenge is orthogonal to what COLUMBUS aims to solve. (iii)
For unconstrained callback arguments, we use random values

from a predefined list, which might be ineffective. For instance,

the yahtzee app lists the game moves in a drop-down list.

A move can be chosen by the arg2 argument (unconstrained)

of the onItemSelected(_,_,arg2,_) callback, which

then looks up the appropriate UI object using that argument.

Many such values of arg2 that we supply could be invalid,

while UI-based techniques can “blindly” click on the list item

without being aware of the valid values of that argument.

Crashes. COLUMBUS found a total of 153 crashes. After

excluding the potential false positives, the total number of

crashes become 137 (Table I). As presented in Table III,
COLUMBUS found crashes of 16 different types in 49
out of 60 apps in the AndroTest dataset. Compared to

STOAT, EHBDROID, APE, and TIMEMACHINE, COLUMBUS

discovered 4.42, 5.48, 1.23, and 1.57 times more crashes,

respectively. To acquire a better understanding of how the tools

perform on individual apps, we calculated the number of apps

for which each tool discovers the most number of crashes. While

STOAT, EHBDROID, APE, and TIMEMACHINE finds the most

crashes in 14, 10, 25 , and 21 apps, respectively, COLUMBUS

performs the best for the highest (45) number of apps.

False positive analysis. Our strategy of invoking callbacks

directly, sometimes with artificially-prepared arguments, can

potentially lead to false positives (FP), i.e., generate spurious

crashes that cannot be triggered when the app is normally

exercised from the UI. Since STOAT, APE, and TIMEMACHINE

are UI-driven testing tools, they always generate legitimate
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Fig. 8: Progression of coverage over time by all the tools on the

AndroTest dataset. Tool codes are similar to Table I

crashes. For COLUMBUS, we identify two potential reasons for

FPs and quantify their prevalence.

(i) Disabled UI elements. Since COLUMBUS does not access

the UI state of the app, it may (incorrectly) invoke a callback cbd
associated with a widget W , which is disabled at the time of in-

vocation. If such a callback cbd exists in an app, then there exists

another callback cbe that calls W.setEnabled() to enable the

widget. We found that only 71 (cbe) out of 4,991 callbacks in our

benchmark apps contain such calls. Now, setEnabled calls

from inside the lifecycle callbacks are not problematic. Because,

the latter is called by the Android framework, which enables the

respective UI elements as part of the initialization of the app.

Among those 71, only 4 callbacks are non-lifecycle ones, which

is negligible with respect to the total number of callbacks.

(ii) Uninitialized nested object argument. If a callback

expects an object argument of classA that we do not find in the

heap, we create an instance a by invoking the class constructor

C. However, instances created in this way may be partially

uninitialized. Suppose, A contains a field A.b of classB,

which C leaves uninitialized. If the callback attempts to access

A.b, then it will result in a NullPointerException. This

is a spurious crash, because when the app is exercised from the

UI, the framework would invoke the callback with a correctly

constructed object. In case of the benchmark apps, we needed

to create object arguments for only 207 (4.15%) out of 4,991
callbacks. Unfortunately, there is no straightforward way to

estimate further how many of these callbacks require nested

object arguments. Even then, since we already invoke object

creation for a reasonably small number of callbacks, that makes

the probability of such FPs minimal.

To investigate into our potential sources of FPs, we first

collected all 55 crashes that are found only by COLUMBUS, but

not by any of those tools. Then, we manually verified those

reports to determine potential FPs. We call a report legitimate, if

we can reproduce a crash with the same stack trace by exercising

the app from the UI. To do that, we collected a sequence of

callback invoked immediately before the crash from our tool’s

output log, and also reviewed the relevant part of the source

code to seek further guidance. If we failed to reproduce the crash

within a reasonable number of tries, we flagged the report as FP.

Note that, this estimate is conservative and best-effort, because it

Category Count

Education 27

Games 26

Personalization 18

Tools 17

Multimedia 11

Photography 4

Lifestyle 7

Health & Fitness 4

Food & Drink 4

Entertainment 6

Travel & Local 6

Business 2

Productivity 4

Others 4

Total 140

TABLE II:

Real-world

app categories

ID Exception type A R

1 NullPointerException 52 22
2 IllegalStateException 16 26
3 ArrayIndexOutOfBoundsException 7 4
4 IndexOutOfBoundsException 10 2
6 CursorIndexOutOfBoundsException 10 -

7 UnsatisfiedLinkError 6 -

8 RuntimeException 1 2
9 IllegalArgumentException 15 4

10 ClassCastException 1 2
12 StaleDataException 3 -

13 ActivityNotFoundException 8 6
14 SQLiteDoneException 1 -

15 NumberFormatException 1 -

16 App Exceptions 6 2

Total 137 70

TABLE III: Crashes found by COLUM-

BUS. A: AndroTest, R: Real-world dataset

includes true crash reports that we could not reproduce because

of Android apps’ inherent statefulness. At the end, we failed to

reproduce 16 crashes out of total 153 crashes, which, even in the

worst case, translates to a mere 10.46% FP rate. We argue that

this amount of FPs is acceptable in practice, given the benefits

(extra crashes, coverage) that our approach brings.

RQ1: Compared to the state-of-the-art tools, COLUMBUS

attains the highest coverage on average (58%), and

discovers the most number of crashes (137) on the

AndroTest dataset.

2) Performance on real-world apps: To understand the

practicality of our approach, we tested COLUMBUS on the

real-world dataset. In line with the previous approaches [31],

[41], [19], we only considered the number of crashes discovered

by our tool for this evaluation.

Crashes. As shown in Table III, we discovered a total of

70 crashes of 9 different types in 54 out of 140 apps, where

IllegalStateException (37.14%) and NullPoint-
erException (31.43%) are the most prevalent ones.

RQ2: COLUMBUS is able to find 70 crashes in 54 out of

140 real-world Play Store apps, belonging to 14 categories.

3) Effectiveness of dependency feedback: To show the

effectiveness of the dependency feedback, we performed an

ablation study by comparing COLUMBUS with COLUMBUS wd,

a modified version of our tool that runs without the dependency

feedback. Table I presents the results of this experiment on the

AndroTest dataset.

While the coverage attained by both COLUMBUS and

COLUMBUS wd are comparable, the latter finds − 3 fewer

crashes than the former in 5 apps. By manually inspecting those

apps—Book-cat, qsettings, sanity, sftp, and aCal,

we can confirm that the additional crashes are correlated with

the number of dependency relations discovered. In other words,

due to higher than average (41 dependencies/app) number of

dependencies being present in those apps, the dependency

feedback could indeed help COLUMBUS in triggering more

crashes. In addition, COLUMBUS achieved better coverage than

any other tool for the first four apps.
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RQ3: The dependency feedback used by COLUMBUS is

useful for triggering crashes in apps, particularly for those

ones with large amount of inter-callback dependencies.

VI. LIMITATIONS

Inferring correct value of the object fields. Currently, our

argument generation module can only infer the correct values of

the primitive arguments. However, it can be extended to support

object arguments as well. Consider the callback: onKeyDown
(intkeyCode,KeyEventevent), which gets called when

a key down event occurs. Now, event.getUnicodeChar()
API returns the Unicode character c generated by that key event.

If a callback has paths conditioned on c, we can infer its correct

values by symbolizing the return value of the API. The inferred

values can be used during testing to either dynamically set the

correct value of the appropriate field of the event argument,

or ‘hook’ the getUnicodeChar() API to alter its return

value—exercising more paths in effect.

Creating values for login. There are Android apps which

requires a userid and password to login first before one can

explore its functionality. COLUMBUS in its current shape can

not detect such a login prompt, and enter the username and

password automatically to explore such an app. However, this is

a limitation that we share with the existing state-of-the art tools,

and an interesting direction for future work.

VII. RELATED WORK

Random. Random testing based techniques such as MON-

KEY [8] delivers random events. DYNODROID [29], in addition,

considers system-level events, and monitors which events

have registered listeners in the app to prioritize certain events

depending on the context. PUMA [24] presents an automation

framework that has support for custom dynamic exploration

strategies. However, random testing strategies, though popular,

often get stuck in a “local optima,” making no further progress.

Model-based. Model-based testing approaches guide the

exploration of the app by deriving a model of the app’s UI.

Though some techniques require this model to be provided

manually [44], [51], [42], others reconstruct the UI model

using dynamic app exploration [28], [40], [41], [26], [12], [32].

Other techniques also perform model abstraction via identifying

the structural similarities between different layouts [20],

model refinement by merging several UI interaction [22], and

state recovery using snapshotting [19]. Model based testing

techniques oftentimes suffer from state explosion if there are too

many states in the app. Therefore, they need to strike a balance

between model completeness and scalability.

Symbolic execution-based. Anand et. al. [13] concolically

executes both the Android framework and the entire app, which is

precise, but not scalable. In contrast, COLUMBUS does symbolic

execution only within a callback to strike a balance between pre-

cision, and scalability. Another approach [25] starts the symbolic

exploration in reversed order from the target blocks, and obtains

the sequences of events to reach these targets. Additionally,

several other techniques were introduced for the symbolic

execution of the apps that include libraries as well [34], [21].

Hybrid. Similar to COLUMBUS, several approaches also employ

hybrid techniques, i.e., combination of static and dynamic

strategies, for app exploration. In particular, [15], [27], [50], [47],

[23] reconstruct the app model statically, followed by dynamic

exploration. Other techniques use static analysis to discover

dependencies between different application components, and

use it during the dynamic exploration [15], [43], [25], [38], [23],

[14]. Another guided exploration technique CAR [45] uses a

static constraint analysis to keep the symbolic execution scalable

and obviate the need for whole program symbolic execution. In

contrast, COLUMBUS aims to maximize coverage similar to other

app testing tools limiting the scope of the symbolic execution

only within the callback and sets up the environment in an under-

constrained manner. Moreover, during the dynamic exploration,

COLUMBUS uses a type-guided object matching to supply an ex-

isting, well-formed object to the callback. Whereas, CAR resorts

to a refinement-based construction of heap objects, guided by a

crash-oracle. A crash resulting from a malformed object acts as a

‘hint’ to fix the shape of the object. EHBDROID [39] instruments

the app statically to include callback invocations within the app

code in order to invoke them directly. However, their technique

is not generic, and suffers from limitations as discussed before.

VIII. CONCLUSION

This paper proposed COLUMBUS, a callback-driven Android

app testing technique that improves over the state-of-the-art

in three aspects: (i) systematically identifying the callbacks

present in an app, (ii) inferring coverage maximizing primitive

arguments, while generating object arguments in an Android

API-agnostic manner, and (iii) providing data dependency and

crash-guidance as ‘feedback’ to increase the probability of

triggering uninitialized data related crashes, and preventing

the tool from rediscovering same bugs, respectively. In our

evaluation, COLUMBUS outperformed state-of-the-art model-

driven, checkpoint-based, and callback-driven testing tools both

in terms of crashes and coverage.
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