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Abstract—Modern trojans are equipped with a functionality,
called WebInject, that can be used to silently modify a web page
on the infected end host. Given its flexibility, WebInject-based
malware is becoming a popular information-stealing mechanism.
In addition, the structured and well-organized malware-as-a-
service model makes revenue out of customization kits, which
in turns leads to high volumes of binary variants. Analysis
approaches based on memory carving to extract the decrypted
webinject.txt and config.bin files at runtime make the strong
assumption that the malware will never change the way such
files are handled internally, and therefore are not future proof
by design. In addition, developers of sensitive web applications
(e.g., online banking) have no tools that they can possibly use to
even mitigate the effect of WebInjects.

WebInject-based trojans insert client-side code (e.g., HTML,
JavaScript) while the targeted web pages (e.g., online banking
website, search engine) are rendered on the browser. This
additional code will capture sensitive information entered by
the victim (e.g., one-time passwords) or perform other nefarious
actions (e.g., click fraud or search engine result poisoning). The
visible effect of a WebInject is that a web page rendered on
infected clients differs from the very same page rendered on
clean machines. We leverage this key observation and propose an
approach to automatically characterize the WebInject behavior.
Ultimately, our system can be applied to analyze a sample
automatically against a set of target websites, without requiring
any manual action, or to generate fingerprints that are useful to
determine whether a client is infected. Differently from the state
of the art, our method works regardless of how the WebInject
module is implemented and requires no reverse engineering.

We implemented and evaluated our approach against real-
world, live online websites and a dataset of distinct variants
of WebInject-based financial trojans. The results show that our
approach correctly recognize known variants of WebInject-based
malware with negligible false positives. Throughout the paper, we
describe some use cases that describe how our method can be
applied in practice.

I. INTRODUCTION

Information-stealing trojans allows a malware operator to
intercept credentials such as usernames, passwords, and second
factors of authentication (e.g., PINs or token-generated codes)
or to alter how pages are rendered on the client side at their
will (e.g., search engine result poisoning, click fraud). These
trojans are also referred to as “banking trojans”, because they
are often used to steal banking credentials when the victim
is using an online banking service. However, their flexibility
made them easily adaptable to various uses. According to a
recent Symantec report [9], in 2012 more than 600 institutions

were targeted and a peak of more than 160,000 (October) of
computers were compromised with financial trojans.

As we detail in Section II, the typical information steal-
ers implement the interception mechanism through injection
modules. An injection module, codenamed “WebInject”, ma-
nipulates and inject arbitrary content into the data stream
transmitted between an HTTP(S) server and the browser. This
is implemented through function hooks placed between the
rendering engine of the browser and the network-level libraries.
Previous work [5] leveraged this observation to detect the
hooking libraries as a sign of infection. As a result, WebInject-
based trojans are able to circumvent any form of transmission
encryption such as SSL. Moreover, a recent incident analysis
reported by NASK [2] shows that customized variants of ZeuS
are used to create an effective attack scheme involving both a
PC and mobile component.

Nowadays, the common practice is that security researchers
and professionals exchange samples, as soon as they become
available, within private online communities. This makes it
easy to obtain and run samples, resulting in quick reaction
times, quicker than in the past. However, not all security
analysts of targeted institution are equally equipped or skilled
to perform accurate reverse engineering. Indeed, the analysis
of these malware families, as well as others, require time-
consuming reverse engineering, which result in slower reac-
tion, even when samples are readily available. In fact, the
detection rates of ZeuS are low. Another method used to
extract the trojan configuration files is via memory forensics
(e.g., by executing the sample in a sandboxed environment
and extracting a memory dump for subsequent carving). The
outcome of such analyses normally includes the decrypted
webinject.txt file, which is useful for security analysts of
targeted institutions, because it allows to verify if and how their
website is targeted by an information-stealing campaign. An-
other interesting use case is the automatic analysis of samples
that perform search engine result poisoning. Last, we notice
that developers of sensitive web applications (e.g., online
banking), possibly targeted by WebInject-based malware, are
left with no tools that they can use to mitigate the effect of this
threat. For instance, it would be great if a developer could pro-
grammatically “annotate” a page as “potentially targeted” to
have an automatically-generated JavaScript procedure attached
whenever the page is delivered to the client. Once rendered on
the client page, such procedure would perform a sanity check
to determine the presence of injections from known samples.

Unfortunately, the above mentioned techniques are based
on the assumption that the malware will never change or alter



the way configuration files are encrypted-decrypted in memory.
This inherent limitation makes these methods not future proof,
and shows the need for automatic methods that characterize
the injection behavior of a malware, to tell whether an end
host is infected by which known sample, or whether a given
website is targeted by some known binary, before spending
time to reverse engineer it.

The goal of our approach, called ZARATHUSTRA, is to
automatically characterize the WebInject-based behaviors re-
gardless of the underlying implementation. In addition, we
want to isolate precisely the injected code, as if the config-
uration files of the malware variant were available. Our key
observation is that, regardless of how the hooking mechanism
works, the action of an injection module must eventually
result in changes to the document object model (DOM).
ZARATHUSTRA analyzes samples by first rendering a website
page multiple times in instrumented browser instances that
runs on distinct, clean machines. ZARATHUSTRA repeats the
same procedure on an infected machine, and finally extracts
the resulting, malicious differences in the form of an Xpath
query along with metadata—which we call “fingerprints”. A
specific challenge that we tackle is the removal of legitimate
DOM differences (e.g., due to ads, A-B testing, cookies, load
balancing, anti-caching mechanisms). These differences would
otherwise result in false positives. The fingerprint-generation
system runs on dedicated machines with no interactions with
real clients.

We evaluated ZARATHUSTRA against 213 real, live URLs
of banking websites and 56 distinct samples of ZeuS. In all
cases, our system generated fingerprints correctly. We analyzed
the low fraction of false positives and found that most of them
were caused by legitimate differences found in the original
web pages, which are tackled by ZARATHUSTRA with specific
post-processing heuristics, which can be safely enabled under
realistic conditions, as detailed in Section V. ZARATHUSTRA
scales well, and can process on average 1 URL in less than
3 seconds even on our limited infrastructure. Furthermore,
as fingerprint generation can be performed independently on
samples and URLs, the process is fully parallelizable and
scalable.

As discussed in Section IV-E, the generality of the gen-
erated fingerprints make them suitable for various purposes,
beyond malware analysis, that can help at mitigating the
threat posed by WebInject-based malware. For example, we
ZARATHUSTRA offered as a web service or programming
API that, given a database of samples (which are abundant
today) and a list of URLs, tells which URLs are targeted by
which injection. Fingerprint matching is as fast as evaluating
an Xpath query, which is trivial and supported by any XML-
based client-side software.

In summary, in this paper we make the following contributions:

• We characterize the WebInject mechanism in an
implementation-idependent, forward-looking fashion,
without needing a-priori knowledge about the API
hooking method, nor on the specific configuration
encryption-decryption mechanisms used by the mal-
ware.

• We propose an approach to automatically generate

fingerprints of the injections, requiring only the binary
sample and the target URLs; as a matter of fact, we
automatically generate the relevant information that
would normally be available only by reversing and
extracting the configuration file of the malware with
a manual or non-future-proof process.

• We describe and discuss some case studies and how
vendors can incorporate our approach in the browser-
monitoring components of their antivirus products.

The source code of the ZARATHUSTRA proof of concept is
available online at https://code.google.com/p/zarathustra/.

II. WEBINJECT-BASED TROJANS

Information-stealing trojans are a growing [4, 11], so-
phisticated threat. The most famous example is ZeuS, from
which other descendants were created. This malware is actually
a binary generator, which eases the creation of customized
variants. For instance, as of Feb 4, 2013, according to ZeuS
Tracker1, there are 7,457 distinct variants that are yet to
be included to the Malware Hash Registry database2 (these
variants were 7,384% six months ago). Notice that this is
an under estimate, limited to the binaries that are currently
tracked. This high number of variants results in a low detection
rate overall (39.17% as of Feb 4, 2013, decreased since six
months ago).

State-of-the-art malware is very sophisticated and the de-
velopment industry is quite mature. Trend Micro [1] reports
a 29% increase of financial trojan activity between Q1 and
Q2 of 2013 (from 37–39K to 71K infections, and from 113K
to 146K targeted institutions worldwide). Lindorfer et al. [10]
recently measured that trojans such as ZeuS and GenericTro-
jan are actively developed and maintained. These and other
modern malware families live in a complex environment with
development kits, web-based administration panels, builders,
automated distribution networks, and easy-to-use customiza-
tion procedures. The most alarming consequence is that vir-
tually anyone can buy a malware builder from underground
marketplaces and create a customized sample. Interestingly,
cyber criminals also offer paid support and customization, or
sell advanced configuration files that the end users can include
in their custom builds, for instance to extract information and
credentials of specific (banking) websites. Lindorfer et al. [10]
also found an interesting development evolution, which indi-
cates a need for forward-looking malware-analysis methods
that are less dependent on the current or past characteristics of
the malware. This also relates to the fact that the source code
is sometimes leaked (e.g., CARBERP, ZeuS), which leads to
further creation of new (banking trojan) variants [1] to keep
up with the never-ending arms race.

A. WebInject Functionality

As part of their functionalities, modern trojans include
data-injection and data-stealing capabilities. For instance, since
version 1.0.0, SpyEye features a so-called “FormGrabber”
module, which can be arbitrarily configured to intercept the
data that the victim types into (legitimate) websites’ forms.

1https://zeustracker.abuse.ch/statistic.php
2http://www.team-cymru.org/Services/MHR/



set_url https://extranet.banesto.es/npage/OtrosLogin/LoginIBanesto.htm GP
data_before
name=usuario*</td>
data_end
data_inject
</tr><tr>
</TR> <TR> <TD align=left><FONT size=+0><B>
Clave&nbsp;de Firma:</B></FONT></TD> <TD align=left colSpan=3><INPUT type=password maxLength=8 align=center size=8 value="" name=ESpass></TD>
data_end
data_after
data_end

Figure 1: Example of a real WebInject found on a page of extranet.banesto.es, performed by a ZeuS variant (MD5
15a4947383bf5cd6d6481d2bad82d3b6), along with the respective webinject.txt configuration file. Injections are not limited
to this type of pages but include, for instance, search engine results.

The main goal of money-motivated criminals that rent or
operate information-stealing services is to retrieve valid, full
credentials from infected systems. In the case of online bank-
ing sites, these credentials comprise both the usual username
and password, and a second factor of authentication such as
a PIN or a token. This (one-time) authentication element is
normally used only when performing money transfers or other
sensitive operations. As a security measure, many banking
websites use separate forms, and do not ask for login creden-
tials along with the second factor of authentication. The goal
of the attacker in this scenario is to lure the user into entering
the token up front, together with username and password. This
tactic gives the attacker enough time to use the token.

As of version 1.1.0, SpyEye incorporates the so-called
“WebInject” module, which can be used to manipulate and
inject arbitrary content into the data transmitted between
an HTTP(S) server and the browser. The WebInject module
is placed between the browser’s rendering engine and the
HTTP(S) API functions. For this reason, the trojan has access
to the decrypted data, if any encryption is used (e.g., SSL).

The WebInject module is leveraged to selectively insert the
HTML or JavaScript code that is necessary to steal information
or to make the targeted pages behave differently (e.g., click
fraud, malicious advertising). WebInject allows to do this with
surgical precision. For example, as shown in Figure 1, the
WebInject module inserts an additional input field in the main
login form of an online banking website. The goal is to lure
the victim such that he or she believes that the web page is
legitimately asking for the second factor of authentication up
front. In fact, the victim will notice no suspicious signs (e.g.,
invalid SSL certificate or different URL) because the page is
modified “on the fly” right before display, directly on the local
workstation. Another nefarious action implemented through
this type of functionality is search engine result poisoning or
other forms of illicit content injection (e.g., to perform click
fraud or click jacking).

WebInjects allow attackers to modify only the portion of

page they need by means of site-specific content-injection
rules. More precisely, the attackers can set two hooks (data_-
before and data_after) that identify the web page por-
tion where the new content, defined with the data_inject
variable, is injected. These variables are set at configuration
time into a proper file, named webinjects.txt in the case
of ZeuS, SpyEye, and descendants. Additionally, at runtime,
the malware may poll the botnet command-and-control (C&C)
server for further configuration options—including new injec-
tion rules.

The configuration files embody the actual value of an
information stealer. Indeed, these files, and in particular
webinjects.txt files, are traded3 or sold4 on underground
marketplaces.

B. Library Hooking

The WebInject module of ZeuS and descendants relies on
API hooking. Although distinct families such as ZeuS and
SpyEye have a common WebInject module, new builds and
other (future) families may implement WebInject differently.
In addition, the malware binaries can be packed and obfuscated
in various ways (e.g., different packing method or encryption
key). Moreover, the custom configuration files are encrypted,
and embedded in the final executable. This characteristic, com-
bined with the evolving nature of modern trojans, makes it even
more difficult to extract the static and dynamic configuration
files—besides through time-consuming reverse-engineering ef-
forts, or in the lucky case that the malware itself exposes some
vulnerabilities (e.g., SQL injection, weak cryptography).

III. GOALS, APPROACH AND CHALLENGES

The current “solution” against trojans is to use anti-viruses
on the client side. Since the host is compromised, we are

3http://trackingcybercrime.blogspot.it/2012/08/
high-quality-webinject-for-banking-bot.html

4https://www.net-security.org/malware news.php?id=2163
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Figure 2: The HTML source code produced by the banking
website transits encrypted over the Internet. When it reaches
the OS and thus the Wininet.dll library, the source code
is decrypted and intercepted. ZeuS modifies it on the fly and
sends it through the same pipeline, up to the browser rendering
engine.

well aware that client-side-only approaches are not an actual
solution. There is no solution when the end host is not trusted.
However, we believe that research should focus on mitiga-
tion approaches that (1) capture the inherent behavior of the
targeted family (e.g., WebInject trojans) and, based on those
behaviors, (2) speedup the generation of signatures. In the case
of WebInject-based malware, the competitive advantage is that
they exhibit their behavior in the browser. This makes solutions
similar to the successful Google Safebrowsing feasible, with
the added benefit of centralized deployments such as those
described in Section IV-E.

To pursue our two goals, we believe that a good analysis
approach should not rely too much on the implementation
details of a malware. To this end, we observe the behavior of
WebInject-based trojans (and other WebInject-based families)
from the point of view of the browser. From hereinafter we
use the term “WebInject” to refer to any mechanism used by
malware to inject arbitrary content in the (decrypted) data that
transits between the network layer and the rendering engine of
a browser.

A. Approach Overview

Our approach is to fingerprint the behavior of any
WebInject-based information stealer by looking for the visible
effects of the injection in the targeted websites, regardless
of the underlying implementation (e.g., API hooking, DLL
patching, other yet unknown techniques). Our approach does
not leverage any malware-specific component or vulnerability
to observe and characterize the injection behavior. Therefore,
it is more generic by design.

Our key observation is that a page rendered on an infected
machine unavoidably includes the injected portions of code. In
contrast, the same page rendered on a clean machine contains
the original source code.

To automatically characterize the WebInject behavior of
a given malware sample, our approach requires the malware

sample executable and a list of target URLs. For example,
in the generic case of an anti-virus company that wants to
produce signatures for the top 1,000 online baking applica-
tions, the list of target URLs would contain the URLs of the
respective websites. Another use case is the security officer of
an organization, who receives a daily feed of malware samples
and wants to automatically generate a signatures to quickly
determine whether the organization website is targeted.

As output, our approach produces one Xpath expression
per URL, which precisely identifies the portion of injected or
changed code. For instance, for a given URL, the output looks
like /html[1]/body[1]/center[3]/table[1]/tbody[1]/tr[1]/form[1]
/input[13]. This is, per se, a valuable piece of information for
the analyst. The simplicity of its output makes ZARATHUSTRA
applicable to many different use cases. For instance, as part of
a browser-monitoring component (e.g., based on matching the
Xpath expression against the rendered DOM). In the remainder
of this paper we focus on the details of characterization
process, which is the core part of our contribution.

B. Challenges

Although our approach is conceptually simple when ap-
plied at a small scale (e.g., by manual analysis of a handful
of target websites and samples, as shown in an example
by Ormerod [12]), streamlining it and making it accurate is
far from trivial. Indeed, websites may vary legitimately as a
consequence of client- and server-side caching or upgrades of
the (banking) web application code.

The problem of telling malicious and benign differences
apart is hard to solve in general. In fact, a generic solution
is beyond the scope of our research. However, in the well-
defined case of an attacker that needs to inject at least one
DOM node (e.g., <script />, onclick=, 1<input />),
we can address these challenges with specific heuristics as
described in Section IV-B and IV-C.

IV. SYSTEM DETAILS AND IMPLEMENTATION

The implementation of our approach in ZARATHUSTRA
is summarized in Figure 3. The input of our approach is a
list of URLs that we want to check and a sample. For each
URL we repeat the following procedure. Since we want to
eliminate false positives due to non-significant differences, we
first need to make sure that each URL, if visited from two
clean machines, do not exhibit any difference. If they do, then
we need to ignore such benign difference, as not caused by
the malware behavior. To this end, in the DOM Collection
phase (Section IV-A), ZARATHUSTRA collects a set of DOMs
from a set of identical clean (virtual) machines, and one DOM
from the machine infected with the malicious executable.
The DOMs are compared in the DOM Comparison phase
(Section IV-B), which finds the differences between the “clean
DOMs” and the “malicious DOM”. In the Fingerprint Gen-
eration phase (Section IV-C), the differences are analyzed to
eliminate obvious duplicates (e.g., due to legitimate changes or
caching) and other recurring patterns of legitimate differences.

We implemented the DOM Collection phase on top of
Oracle VirtualBox. We wrote a thin library on top of its API
to create, snapshot, start-stop the VMs, and a library based
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Figure 3: Server side architecture of ZARATHUSTRA, which is
in charge of analyzing a given URL against a given trojan.

on WebDriver5, a platform- and language-neutral interface
that introspects into, and controls the behavior of, a web
browser and dumps the DOM once a page is fully loaded. The
DOM Comparison relies on XMLUnit’s DetailedDiff
class functions. The Fingerprint Generation phase does not
rely on 3rd-party libraries.

A. Phase 1: DOM Collection

This phase receives a target URL as input. It starts n
clean VMs plus one infected VM. Each VM automatically
starts the browser with WebDriver, visits the URL, lets the
page load completely, and saves the resulting DOM. We then
access and store the DOM as computed by the browser, thus
including all the manipulations performed by client-side code
at runtime while the page loads. The DOM encompasses the
content of the nodes in the page, including script tags. This
phase outputs the n “clean DOMs” that result from visiting the
target URL with the clean VMs, plus one “malicious DOM”
for the infected machine. The “malicious DOM” contains the
injection that we want to extract.

B. Phase 2: DOM Comparison

This phase compares DOM , the “malicious DOM” against
the “clean” DOMi ∈ [1, n] to find distinct differences.
We rely on XMLUnit’s DetailedDiff.getAllDiff-
erences(), which walks the tree of DOM and, for each
node, walks the tree of DOMi to look for the following
differences:

• New node: This catches one of the most com-
mon manifestations of information stealers (e.g., new
<input /> fields). This phase takes into account
any element type (e.g., forms, scripts, iframes, text).

5http://www.w3.org/TR/webdriver/

• New attribute: This reveals the presence of possibly
malicious attributes such as the onclick event, used
to bind JavaScript code that performs (malicious)
actions whenever certain user-interface events occur.

• Attribute value modification: This catches manipu-
lations on existing attribute values (e.g., to change the
server that receives the data submitted with a form, or
modifies the JavaScript code already associated to an
action).

• Text node content modification: This occurs when
a malware modifies the content of an existing node,
for instance to add new code within a script tag, or to
change the displayed text.

A pure removal of a DOM node (i..e, not followed by a
node insertion) would be against the goals of the malware
operator. Substitutions of DOM nodes are accounted for by
ZARATHUSTRA as a modification (3rd and 4th case). The
output of this phase is a set of DOM differences.

C. Phase 3: Fingerprint Generation

This phase prunes the DOM differences from the DOM
Comparison and generates a set of fingerprints. First, we
remove the differences between each couple DOMi and
DOMj , ∀i 6= j to take into account the legitimate changes
between “clean DOMs”, which could cause false positives. In
other words, we obtain a pruned set of differences:

F = diff(DOMi, DOM)︸ ︷︷ ︸
all differences

\ diff(DOMi, DOMj)︸ ︷︷ ︸
benign differences

∀i, j ∈ [1, n], i 6= j

where “diff(A,B)” indicates the distinct differences between
DOM A and B, and the malicious differences are those
obtained in Phase 2.

The rationale is that by visiting the same URL multi-
ple times we obtain multiple versions of the same DOM,
thus mitigating the effect of legitimate differences caused by
session-sensitive content (e.g., caching, cookies). Furthermore,
the heuristics 1–4 described in the remainder of this paper
eliminate other legitimate differences.

The reader may wonder why, instead of comparing one
infected vs. many clean DOMs, we do not compare many
infected vs. many clean DOMs. Indeed, this would, in theory,
create more variants of both the DOMs (i.e., benign vs.
malicious), eliminating the benign differences more effectively.
In practice, we would need to visit each URL from multiple
infected virtual machines and compare the collected “malicious
DOMs” against the “benign DOMs”. This creates a potential
performance problem. Moreover, with a pilot study we noticed
that one “malicious DOM” per target URL is sufficient. In
fact, visiting the same URL from multiple infected machines
results in collecting DOMs that contain elements that are
already present in the benign DOMs, so that will be eliminated.
In simple words, increasing the number of malicious DOMs
beyond one, only increases the required resources without
adding any benefit.



An example generated fingerprint for a given URL and
sample is:

{
"malicious_node": {
"parent": "form",
"value": "input",
"xpath": "/html[1]/body[1]/table[3]/tbody[1]/tr[1]/form[1]/input[13]"

}

which specifies the <input /> field injected in the real case
of Figure 1. The set of fingerprints F already contains valuable
information that precisely characterizes if and how an injection
takes place. As F is generated in a fully automated way, it
may still contain some false differences. These are addressed
by two heuristics.

1) Heuristic 1: Ignoring Dynamic DOM Differences: We
observe that several legitimate differences are actually due to
DOM modifications performed by the browser that executes
JavaScript routines while rendering the page. At a first glance,
disabling JavaScript may lead to excluding malicious DOM
modifications caused by the malware. However, WebInject
malware always insert at least one static node or attribute,
which would be still visible even when JavaScript is disabled.
As we discuss in Section VI, even in the corner case of
malware that injects code inside an existing <script />
tag, by adding static code that performs the actual DOM
manipulation, ZARATHUSTRA still generate a fingerprint of
the static code injection in the first place.

2) Heuristic 2: Caching Server Responses: By caching
server responses—using the URL as the caching key—we
reduce the false differences due to dynamic code generation
on the server side, which may insert, for instance, a unique
element in each response (e.g., to avoid cross-site request
forgery or caching). This simple heuristic can be safely enabled
and, as showed in Section V-D, helps at effectively reducing
the false positives.

D. Post-processing Heuristics

The output of the previous phase is the set F of finger-
prints, which is post processed through the following two
heuristics that minimize the occurrence of false differences.

1) Heuristic 3: Filtering Special Attributes: Several at-
tributes can be safely ignored, because they would not lead
to new DOM nodes. We assume that if a malware attempts
to forcefully inject a DOM node (e.g., <input />) into an
attribute value, this would lead to parsing errors, and thus to
a useless DOM node (e.g., style="<input ... />").
Specifically, we ignore value, style, class, width,
height, sizset, sizcache, and alt. The style at-
tribute may be used maliciously, to inject JavaScript code.
However, Heuristic 1 prevents this case.

2) Heuristic 4: Filtering Text Nodes: Text nodes are harm-
less, because they can only contain pure text. We ignore all
the text nodes, unless they are children of <script /> tags.
There are many other ways through which a malware can insert
custom client-side code, but ZARATHUSTRA already accounts
for these types of WebInjects during DOM Comparison.
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Figure 4: Three application scenarios described in Sec-
tion IV-E.

E. Application Scenarios

ZARATHUSTRA produces fingerprints in the form of Xpath
expressions, which allow to check, on the client side, whether
a web page is currently being rendered on an infected machine.
The most natural application is the antivirus scenario. In
practice, as depicted in Figure IV-E, we foresee a centralized
server, which runs Phase 1–3 on a feed of malware samples
and URLs.

In Scenario 1 the URLs are received by the clients
(e.g., antivirus component, browser plugin, web application).
The server replies with the list of fingerprints related to the
requested URL(s). In the case of an antivirus, the browser-
monitoring component (e.g., similar in spirit to Google
Safebrowsing) can request the fingerprint of each browsed
URL, and verify if any of the fingerprint match.

The second scenario that we envision, Scenario 2, has to
do with large-scale monitoring. More precisely, we believe that
ZARATHUSTRA could be a good companion for initiatives such
as ZeuS or SpyEye Tracker, Virustotal, Anubis, Wepawet and
similar web services that receive large daily feeds of malware
samples and URLs to analyze. In this context, ZARATHUSTRA
can be used to automatically determine whether a sample
performs web injection against a given URL—regardless of
whether it is ZeuS or SpyEye, or some other unknown
family—and to extract the portion of injected code.

One last application (Scenario 3) is that of a developer
of high-profile web applications (e.g., online banking), which
are likely to be targeted by WebInject-based malware once in
production. This scenario was suggested to us by a developer
working for a large national bank, who noticed the lack
of a centralized solution to determine whether their clients
where infected with some banking trojan. In this context, the
developer would like the web framework to offer an API to
programmatically mark sensitive resources (e.g., /page/login/,
or those that contain forms) as such.

Marked resources will be processed by the web framework
right before the HTTP response is sent to the requesting client.
In our vision, the web framework will append a Javascript



procedure that, once executed on the client, performs a check
similar to the one described in the aforementioned “Safebrows-
ing” scenario. The JavaScript can be obfuscated and inserted in
randomized positions, so as to make it difficult for the malware
author to selectively remove it. The trojan on the client side
may still attempt to disable that JavaScript procedure. Note
that disabling Javascript completely is against the attacker goal,
because it would disrupt the page.

V. EXPERIMENTAL EVALUATION

Between January and February 2013 we evaluated our
implementation of ZARATHUSTRA against 213 real, live URLs
of banking websites and 56 distinct samples of ZeuS (see
Appendix). Our main goal was to measure the correctness
of the fingerprints, generated with and without the heuristics.
Then, we wanted to assess the resource required to analyze a
given amount of URLs and samples.

A. Dataset

With the above premises, our decision fell on ZeuS, be-
cause it is by far the most widespread information stealer that
performs injections: According to ZeuS Tracker, as of Feb 4,
2013 there are 556 known C&C servers (242 active), and an
alarmingly low estimated antivirus detection rate (39.17%, zero
for the most popular and recent samples). We also conducted
a series of explorative experiments with SpyEye, which is less
monitored than ZeuS (184% C&C servers, 69 active, and an
average detection rate of 27.94%); thus, it is more difficult
to obtain an ample set of recent samples. However, SpyEye
uses the same WebInject module of ZeuS, as described by
Binsalleeh et al. [3], Buescher et al. [5], Sood et al. [14].
For these reasons, for the purpose of evaluating the quality
of our fingerprint-generation approach, we decided on ZeuS
as the most representative information stealer that generated
real-world injections. We downloaded 76 samples, but 20 of
these failed to install or crashed, leaving 56 distinct samples.

We constructed a list of target URLs by merging 2
webinjects.txt files found on underground forums, plus
the webinjects.txt leaked as part of ZeuS 2.0.8.9 source
code6. We so obtained 293 distinct URLs. To make it feasible
to manually verify the results in a reasonable time, we selected
213 URLs (143 organizations) among the URLs that were
active at the time of evaluation. Building a list of URLs from
webinjects.txt files found in the wild allowed us to
deal with real-world targeted pages. As WebInjects occur on
landing or login pages, we concentrated our search on such
pages.

We created the ground truth by configuring ZARATHUSTRA
with all the heuristics enabled. We then manually analyzed
the results to ensure that no false or negatives were found:
By design, if there is an injection, ZARATHUSTRA detects it.
So, false negatives are not an issue. An alternative approach
could have been to craft a proper webinjects.txt as the
ground truth. However, we wanted to test ZARATHUSTRA on
real injections found in the wild.

6https://bitbucket.org/davaeron/zeus/
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Figure 5: Scalability of ZARATHUSTRA: Time required to pro-
cess 213 URLs with 76 samples (including crashing samples).
the labeled points indicate the time to process 1 URL.

B. Setup and Scalability

We run all our experiments on a 1.6GHz, 4-cores x86-64
Intel machine with 16GB of RAM. We installed Windows XP
SP3 (Internet Explorer 6, 7, 8) on each VM and granted out-
bound and inbound Internet access. ZARATHUSTRA required
256MB of RAM and 2 to 5GBs of disk space per VM.

In our experiments we run Phase 1 (DOM Collection)
with 2 to 35 VMs to collect the clean DOMs. Figure 5 shows
that ZARATHUSTRA scales well overall: With 10 VMs running
in parallel we are able to process 1 URL in less than 3 seconds.
The architecture of ZARATHUSTRA has no central node, nor
any dependency that prevent full parallel operations: As a
result, its capacity scales directly with the amount of resources
available.

C. Correctness

Table I summarizes the top-ten domains where
ZARATHUSTRA correctly recognized injections caused
by ZeuS. Some samples perform zero injections, although
usually we found around 1 to 9 injections per distinct URL
of the same domain.

Table II summarizes the influence of each heuristic: We
disabled one heuristic at a time and ran the same experiment.
The last row reports the correctness of the fingerprints when all
the heuristics are enabled: We manually verified the presence
of actual injections and set this as the ground truth for the ex-
periments reported in the above rows. Overall, ZARATHUSTRA
found that 23.48% of the URLs were targeted by one or more
samples: All found injections were correct as confirmed by
manual analysis. The second column is the most important
one. It shows the fraction of URLs where ZARATHUSTRA
(correctly) detected that a specific sample was performing an
injection. We notice that the contribution of the first heuristic
is fundamental, because such fraction of URLs decreases to
39.58% (on average) when disabled. The second heuristic
also provides a significant contribution, whereas the last two
heuristics are not particularly influential in our dataset.

D. False Positives

False positives occur when ZARATHUSTRA confuses be-
nign differences as injections. On the data collected during
the experiment described in Section V-C, we obtained zero
false positives when using all the heuristics.

In a more detailed analysis, we concentrated on the influ-
ence of Heuristic 1 versus the use of multiple clean VMs.



Table I: Top ten target websites in our dataset. The minimum,
maximum, total and average number of injections are calcu-
lated over the set of ZeuS 56 samples, and on the URLs within
each domain.

EFFECTIVE TLD # INJECTIONS
min max tot avg

ybonline.co.uk 0 28 952 9.0667
cbonline.co.uk 0 45 699 2.6885
lloydstsb.com 0 23 677 4.3121

bbvanetoffice.com 0 14 312 5.7778
virginmoney.com 0 279 279 5.6939

if.com 0 77 231 4.2778
banesto.es 0 10 194 0.7239
rbkmoney.ru 0 8 112 2.1132

accessmycardonline.com 0 31 93 1.7547
smile.co.uk 0 29 87 1.6415

The rationale is that this heuristic was the most effective at
eliminating false positives, as the first row of Table II shows.
Thus, after disabling Heuristic 1 we run ZARATHUSTRA with
an increasing number n ∈ [1, 35] of clean VMs. In this way,
we can assess how well ZARATHUSTRA can tell legitimate
differences and true positives apart when using a sufficiently
large number of emulated clean clients in Phase 1.

As Figure 6 shows, without Heuristic 1 the false positives
can still be mitigated by increasing n. The false positive rate
approaches almost zero (1%) if at least 35 clean VMs are
used. We manually observed that the vast majority of that
1%, at n = 35, was caused by JavaScript-based advertise-
ment networks and modifications performed by the browser,
which lead to highly-dynamic DOMs. Thus, when deploying
ZARATHUSTRA on URLs that have a dynamically-generated
DOM, it is recommended that either Heuristic 1 is enabled, or
a large number of VMs is used to create a robust “baseline”.

VI. DISCUSSION AND LIMITATIONS

From our experiments we can conclude that ZARATHUS-
TRA can reach zero false positives when all the heuristics
are enabled—or with a decent number of clean VMs in their
stead—and has zero false negatives by design. State-of-the-art
approaches (e.g., via reverse engineering) may reach have zero
false positives. However, considered the time required to gen-
erate signatures with these methods, the price is that of missed

HEURISTICS AVG. CORRECT (± VAR.) %URLs

2,3,4 39.58 ± 11.53% 52.17%
1,3,4 74.98 ± 15.42% 23.48%
1,2,4 97.97 ± 0.069% 22.61%
1,2,3 98.42 ± 0.124% 23.04%

All 100.0% 23.48%

Table II: Contribution of each heuristic on the quality of the
fingerprints. The second column reports the fraction of URLs
with correctly-identified injections (this fraction is averaged
over the set of 56 samples). The last column reports the
fraction of URLs where at least one sample was detected while
performing an injection, including false differences, which are
analyzed separately in Section V-D.
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Figure 6: False positives due to legitimate differences decrease
for an increasing number, n ∈ [2, 35], of clean VMs, until it
reaches 1.0%. With Heuristic 1 enabled, we achieve zero false
positives.

injections (i.e., false negatives). ZARATHUSTRA, instead, an-
alyzes WebInject-based malware automatically, quicker than
a reverse-engineering-based approach, and with the same re-
quirement.

Our second discussion point is that malware operators
could rewrite the injected code, introducing no-op DOM
nodes with the goal of evading the fingerprints generated by
ZARATHUSTRA: Adding an additional <div /> wrapper to a
page (in a random position), for instance, would circumvent a
naı̈ve use of our fingerprints (i.e., if the full Xpath is considered
from the root to the leaves). However, none of the samples
in our dataset adopted this technique. In addition, and more
importantly, modifying the structure of a page can easily result
in user-visible, brittle modifications. This is clearly against the
malware operators’ goal of preserving the look of the page as
much as possible. Although we leave the implementation of a
proper fingerprints matching algorithm to future work, we are
aware that there is an accuracy trade off between matching the
entire XPath expression of a fingerprint versus matching only
the leaf nodes. However, if the leaf nodes are detailed enough
(e.g., they contain attributes), an algorithm that matches only
the leaf nodes can achieve good accuracy and high generality.

WebInjects are the only artifacts that we rely on to observe
the action of an information stealer. As a result, if a banking
trojan succeeds in hiding its behavior (e.g., by injecting
content only under certain conditions), ZARATHUSTRA cannot
guarantee to extract differences every time a targeted URL is
visited. This discussion point relates to malware that adopt
anti-emulation techniques. However, we rely on virtual ma-
chines solely for ease of implementation and flexibility during
evaluation. ZARATHUSTRA works perfectly, and even faster,
on bare metal. Hence, this obstacle is easily circumvented by
adopting the method proposed by Kirat et al. [8] to obtain
virtual-machine-equivalent snapshots on physical hardware. In
this way, no malware can possibly recognize that it is running
in a controlled environment.

Last, a minor point of our current implementation of
ZARATHUSTRA is that we take the (banking) website as an
oracle. For reasons that fall outside our attacker model (e.g.,
client-side malware), an injection may match exactly with a
benign difference. For example, this happens if the website
is updated with a new form input that matches the very same
Xpath expression of an injection. Not only this is very unlikely
to happen, it is also very easy to remediate by leveraging
feedback from the bank whenever their site is updated, or



possibly by requesting an update of the fingerprints for that
domain. It is indeed reasonable to envision ZARATHUSTRA
deployed within a bank information system: This use case
would avoid most, if not all, the venues for false positives as
a fully up-to-date model of the clean website would always
be available. Similarly, ZARATHUSTRA can easily monitor
authenticated web pages, which are not a limitation when our
system is deployed by the website provider (e.g., bank).

VII. RELATED WORK

Trojans have been studied in the past two years. Sood
et al. [14] give a detailed overview of the components of
SpyEye, including its development kit, and describe how
SpyEye integrates in the whole criminal ecosystem. Binsalleeh
et al. [3] performed a similar study on the ZeuS crimeware
toolkit.

The key intuition of Buescher et al. [5] is that WebInjects
are currently implemented by hooking into the Windows API
functions: Since version 2, ZeuS hooks into Wininet.dll,
used by Microsoft IE to (e.g., HttpSendRequestA,
InternetReadFile). The authors analyzed all the possible
hooking mechanisms that could be implemented in the Win-
dows OS (i.e., inline hooks, import address table hooks, export
address table hooks, and hooking techniques that manipulate
the windows loader mechanism) and, from them, they derived
behavioral fingerprints. In practice, they look for extra code
sections in the basic Windows libraries, by comparing the
version stored on disk against the version loaded in the process
memory. Extra code sections are a sign of hooking.

Our approach is similar in spirit to [5], which however
focuses on the binary libraries loaded in memory. Instead
of focusing on the specific DLL hooking mechanism and
functions adopted, we concentrate on the manifestation of such
hooking in the browser.

Also [6] is related to our work, since it protects the browser
from malicious websites that perform dynamic changes of the
DOM. Although not designed specifically to target information
stealers, it could be applied to recognize WebInjects. The
system instruments the ECMA script layer by proxying its
functions so to profile their execution and recognize malicious
patterns. However, the authors mention that their method can
detect changes of the DOM that occur at runtime, whereas
WebInjects work at the source-code level.

Along a different line, Riccardi et al. [13] developed a
chosen-plaintext attack against the encrypted stream that flows
between ZeuS (1.x and 2.x) and its C&C. The chosen plaintext
is a combination of the information from the analysis of the
malware toolkit and the data collected while running a sample
in a controlled environment (e.g., cookies, user credentials,
or computer hostname). These attacks are effective against
a specific version of a malware binary. Unfortunately, they
require the reverse engineering of the malware.

VIII. FUTURE WORK

Besides addressing the discussion points described in Sec-
tion VI, future research should concentrate on more advanced
uses of WebInjects.

As described in Kharouni [7] targeted attacks may not
result in DOM modifications. An example is a banking web
application that allows to divert a wire transfer by simply
modifying one, single parameter in an outgoing HTTP request,
the respective HTTP response (e.g., page that confirms the
result of a transaction), and all the subsequent pages. This
threat will require modifications to ZARATHUSTRA, because
the injections may occur in pure text nodes. Thus, the set of
heuristics will need to be refined to cope with these corner
cases.

Finally, in this paper we showed that the DOM is a simple
yet effective observation point. We believe that other aspects
of the browser behavior can be observed and compared on
infected vs. clean clients, to assess whether the information
stealers cause side effects in the browser that can be used as
a detection criteria.

IX. CONCLUSIONS

In this paper we have presented ZARATHUSTRA, an auto-
mated system to observe the client side behavior of financial
trojans that perform WebInjects. ZARATHUSTRA generates
fingerprints of the DOM differences by comparing web pages
as they are rendered in an instrumented browser running on
clean and infected virtual machines. The first advantage of
our system is that of requiring no reverse-engineering effort.
Moreover, our approach is future proof by design.

Our evaluation of ZARATHUSTRA against 213 real, live
URLs of banking websites and 56 distinct samples of ZeuS
show that, in all the cases, our system extracted all the
injections correctly. The low rate of false positives (1.0%) were
caused by legitimate differences in the original web pages. We
have developed specific heuristics, which can reduce such false
positives to zero. ZARATHUSTRA scales well, and can generate
fingerprints for 1 URL in less than 3 seconds on average, even
on our modest infrastructure.

Although simple, our approach has the great advantage of
being completely agnostic with respect to the source of the
differences: As long as the manipulated data is observable,
our approach can be generalized to create further “difference
modeling” techniques that can be used to characterize the
activity of an information stealer from other observation points.
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APPENDIX

FAMILY MD5 DETECTED INJECTIONS

ZeuS 68ab93087e2bf697e48b912b4546e666 0/0
ZeuS 93895e081e679f8d9760de48b4ad349f 17/17
ZeuS 757f4dcb8fb34e8d168e632f16cebd53 13/13
ZeuS 1a45e46567b84d38ba868f702e795913 4/4
ZeuS fd622057a281813c32cade7ad54843a5 12/12
ZeuS 9cd8fbd475c088d860bdc1371924dd4f 13/13
ZeuS 9ffe865c925bf06d35aa6b68cdaf3609 0/0
ZeuS 85719c933ccdb42f37e8c4d9b5e6bcfd 0/0
ZeuS 2105082b794ecfa02136e012f5ab4e6b 0/0
ZeuS 15a4947383bf5cd6d6481d2bad82d3b6 13/13
ZeuS b2a52dabdc8134199cd7858dd8e41013 17/17
ZeuS b68d88be4d65b29ad17937d8a419d8ba 0/0
ZeuS bb0c5a0c13682b996f5ab4b5dd79f430 17/17
ZeuS 254712088ab8e08619f20705d7a09cf1 0/0
ZeuS 6ba342b445092151d8171a62efe633cb 17/17
ZeuS 71d1a97b5776f3adc7f92ba6e82d162b 13/13
ZeuS b82eeaf8d5c0ed3d44269196865beb80 13/13
ZeuS 21ef35e6e3f3494d134e9928ca6f38e8 17/17
ZeuS e54d1b119211907dad7dc33ff087d5be 13/13
ZeuS 56f8a7c7721aa96e543d57b0fef0f98f 0/0
ZeuS 2a12ba5847c0fb58a89ea6b2f6dd1a97 0/0
ZeuS 1ad8e54179e8c2c7767ea3b039d542fc 2/2
ZeuS 9b9951c50e04818c413c8cd1a3096a6b 0/0
ZeuS d60487f05000160d85db0b354dbdd866 16/16
ZeuS cdf3bb9c75000fc49c7c148b76c20b45 17/17
ZeuS 31ea03a2a33a75ddf48d52f4605ef0bb 16/16
ZeuS b1a49aa03fc1a8226ebc1205bdcf5562 13/13
ZeuS 6384e4f1b5eeefbcb99a281ac514078a 0/0
ZeuS 4df1446e8419978a0999ff2fa3fd60a3 17/17
ZeuS 041c17a7b97550fd69d25613d9ef8f46 0/0
ZeuS 9bc0e3d19af915c608a784fda63b0076 13/13
ZeuS a4aa162745adcb84373e6a623125c650 12/12
ZeuS 22788996e2381bdb97480b8de141ec2c 0/0
ZeuS 5e26d372feb7d085b752fffa931fc156 0/0
ZeuS 39ad78a889a2b40a94dd700d67f1a5ed 2/2
ZeuS b2c82ffe10763cdc241c7fa8d97097ae 13/13
ZeuS bf45f27a403acfd3847fbbae88a8375f 0/0
ZeuS 9abaffda80841aa87c9f5786e0db639e 0/0
ZeuS 029d4f8dcf43837f773116439b07e980 1/1
ZeuS 08e01221186cf82952c25d995176561b 0/0
ZeuS 6436032a3d5bf53c6273ddd0ffab80be 40/40
ZeuS fd12f0d2e2bbef953ac87d4dca32c15d 0/0
ZeuS 3ba3149213e6b9091c727104dbb26ea6 41/41
ZeuS b62dbd301f130487dfbc1473dced8aad 17/17
ZeuS f75e3fa05762072e5e6471f3fb982087 13/13
ZeuS c04fddfaab6b879a25b036980a34908e 12/12
ZeuS ffcaf8a2f2f59e0f7b165d085842bd17 16/16
ZeuS 70dfde201f6a9a66730d9ae6b69450f8 42/42
ZeuS ecc0a5bdf5174efcd9d292e815de06f4 11/11
ZeuS 5298f1fd6b300223f6bcdbc1fa89c2c0 0/0
ZeuS 7f280b73093e5b61ab2eec7b6ebda420 17/17
ZeuS 21248f3752c84ee5866a95992dba0813 17/17
ZeuS 51eef801f614a0278c8b79f7be9d2fdf 12/12
ZeuS be4f416d394b4e305fd0e11d40a4242c 17/17
ZeuS 99646549006435d73efeddbbbcf4313f 13/13
ZeuS c4ba4d84e5b40132e82b403469eb13ca 0/0


