
ARTICLE IN PRESS
Computer Networks xxx (2005) xxx–xxx

www.elsevier.com/locate/comnet
A multi-model approach to the detection of web-based attacks

Christopher Kruegel *, Giovanni Vigna, William Robertson

Reliable Software Group, University of California, Santa Barbara, USA
Abstract

Web-based vulnerabilities represent a substantial portion of the security exposures of computer networks. In order

to detect known web-based attacks, misuse detection systems are equipped with a large number of signatures. Unfor-

tunately, it is difficult to keep up with the daily disclosure of web-related vulnerabilities, and, in addition, vulnerabilities

may be introduced by installation-specific web-based applications. Therefore, misuse detection systems should be

complemented with anomaly detection systems.

This paper presents an intrusion detection system that uses a number of different anomaly detection techniques to

detect attacks against web servers and web-based applications. The system analyzes client queries that reference server-

side programs and creates models for a wide-range of different features of these queries. Examples of such features are

access patterns of server-side programs or values of individual parameters in their invocation. In particular, the use of

application-specific characterization of the invocation parameters allows the system to perform focused analysis and

produce a reduced number of false positives.

The system derives automatically the parameter profiles associated with web applications (e.g., length and structure

of parameters) and relationships between queries (e.g., access times and sequences) from the analyzed data. Therefore, it

can be deployed in very different application environments without having to perform time-consuming tuning and

configuration.

� 2005 Elsevier B.V. All rights reserved.

Keywords: Intrusion Detection; World-Wide Web; Machine Learning; Anomaly Models
1. Introduction

Web servers and web-based applications are

popular attack targets [20]. Web servers are usu-
1389-1286/$ - see front matter � 2005 Elsevier B.V. All rights reserv

doi:10.1016/j.comnet.2005.01.009

* Corresponding author.

E-mail addresses: chris@cs.ucsb.edu (C. Kruegel), vigna@

cs.ucsb.edu (G. Vigna), wkr@cs.ucsb.edu (W. Robertson).
ally accessible through firewalls, and web-based

applications are often developed without following

a sound security methodology. Attacks that ex-

ploit web servers or server extensions (e.g., pro-

grams invoked through the Common Gateway
Interface [7] and Active Server Pages [28]) repre-

sent a substantial portion of the total number of

vulnerabilities. By analyzing the CVE entries from
ed.

mailto:chris@cs.ucsb.edu
mailto:vigna@ cs.ucsb.edu
mailto:vigna@ cs.ucsb.edu
mailto:wkr@cs.ucsb.edu


Table 1

Percentage of web-related attacks in the Common Vulner-

abilities and Exposure database, per year

Type Year Total Web-related Percentage

CVE 1999 809 109 13.5

2000 800 186 23.3

2001 588 120 20.4

2002 376 100 26.6

Total 2573 515 20.0

CAN 1999 742 115 15.5

2000 403 96 23.8

2001 806 236 29.3

2002 1197 385 32.2

2003 1050 207 18.7

2004 797 182 23.8

Total 4995 1221 24.4

The table presents the results for both accepted entries (CVE)

and candidate entries (CAN).

2 C. Kruegel et al. / Computer Networks xxx (2005) xxx–xxx

ARTICLE IN PRESS
1999 to 2004, we identified that web-based attacks

account for 20–30% of the attacks (see Table 1). In

addition, the large installation base makes both

web applications and servers a privileged target

for worm programs that exploit web-related

vulnerabilities to spread across networks [5].

To detect web-based attacks, intrusion detec-

tion systems (IDSs) are configured with a number
of signatures that support the detection of known

attacks. For example, at the time of writing, Snort

2.2 [37] devotes 1037 of its 2464 signatures to

detecting web-related attacks. Unfortunately, it is

hard to keep intrusion detection signature sets up-

dated with respect to the large numbers of contin-

uously discovered vulnerabilities. In addition,

vulnerabilities may be introduced by custom
web-based applications developed in-house.

Developing ad hoc signatures to detect attacks

against these applications is a time-intensive and

error-prone activity that requires substantial secu-

rity expertise.

To overcome these issues, misuse detection sys-

tems should be complemented by anomaly detec-

tion systems, which support the detection of new
attacks. In addition, anomaly detection systems

can be trained to detect attacks against custom-

developed web-based applications. Unfortunately,

to the best of our knowledge, there are no avail-

able anomaly detection systems tailored to detect
attacks against web servers and web-based

applications.

This paper presents an anomaly detection sys-

tem that detects web-based attacks using a number

of different techniques. The anomaly detection sys-
tem takes as input web server log files that con-

form to the Common Log Format (CLF) and

produces an anomaly score for each web request.

More precisely, the analysis techniques used by

the tool take advantage of the particular structure

of HTTP queries that contain parameters [11]. The

access patterns of such queries and their parame-

ters are compared with established profiles that
are specific to the program or active document

being referenced. This approach supports a more

focused analysis with respect to generic anomaly

detection techniques that do not take into account

the specific program being invoked.

This paper is structured as follows. Section 2

presents related work on the detection of web-

based attacks and on learning-based anomaly
detection. Section 3 describes an abstract model

for the data analyzed by our intrusion detection

system. Section 4 presents the anomaly detection

techniques used. Then, Section 5 contains the

experimental evaluation of the system with respect

to real-world data and discusses the results ob-

tained so far and the limitations of the approach.

Finally, Section 6 draws conclusions and outlines
future work.
2. Related work

The work presented here is related to three dif-

ferent areas of intrusion detection, namely learn-

ing-based anomaly detection, application-level
intrusion detection, and, more specifically, detec-

tion of attacks against web servers. In the follow-

ing, we discuss how previous works in these three

areas relate to our research.

Anomaly detection relies on models of the in-

tended behavior of users and applications and

interprets deviations from this ‘‘normal’’ behavior

as evidence of malicious activity [10,19,14,26,12].
A basic assumption underlying anomaly detection

is that attack patterns differ from normal behavior.

In addition, anomaly detection assumes that this



C. Kruegel et al. / Computer Networks xxx (2005) xxx–xxx 3

ARTICLE IN PRESS
‘‘difference’’ can be expressed either quantitatively

or qualitatively. This approach is complementary

with respect to misuse detection, where a number

of attack descriptions (usually in the form of signa-

tures) are matched against the stream of audited
events, looking for evidence that one of the mod-

eled attacks is occurring [16,33,30]. Mainstream

intrusion detection systems, e.g., Snort [37] and

ISS�s RealSecure [18], are mostly misuse-based

even though they incorporate some anomaly-

based techniques (e.g., protocol verification

components).

The classification of intrusion detection ap-
proaches into anomaly-based and misuse-based is

orthogonal with respect to the particular technique

used to characterize normal or malicious actions.

There are cases where ‘‘signatures’’ or ‘‘policies’’

are used to specify the expected behavior of users

or applications, and, therefore, the detection of

an anomaly is achieved leveraging models that

are mostly used in misuse-based intrusion detec-
tion systems, such as state-transition systems

(see, for example, [39,21,46]). Also, there are ap-

proaches where statistical analysis is used to derive

a characterization of malicious activity and devel-

op signatures of attacks. Therefore, even though

this technique is similar to the ones used in a num-

ber of anomaly detection approaches, the resulting

system is to be considered misuse-based (e.g., [27]).
In the following, we will use the term ‘‘learning-

based anomaly detection’’ to denote the class of

approaches that relies on training data to build

profiles of the normal, benign behavior of users

and applications.

Different types of learning-based anomaly

detection techniques have been proposed to ana-

lyze different data streams. A common approach
is to use data-mining techniques to characterize

network traffic. For example, in [36] the authors

apply clustering techniques to unlabeled network

traces to identify intrusion patterns. Statistical

techniques have also been used to model the

behavior of network worms (see for example

[29]). Other approaches use statistical analysis to

characterize user behavior. For example, the sem-
inal work by Denning [10] builds user profiles

using login times and the actions that users

perform.
A particular class of learning-based anomaly

detection approaches focuses on the characteris-

tics of specific applications and the protocols they

use. For example, in [13] and [48] sequence anal-

ysis is applied to system calls produced by specific
applications in order to identify ‘‘normal’’ system

call sequences for a certain application. These

application-specific profiles are then used to iden-

tify attacks that produce previously unseen se-

quences. As another example, in [31] the authors

use statistical analysis of network traffic to learn

the normal behavior of network-based applica-

tions. This is done by analyzing both packet
header information (e.g., source/destination ports,

packet size) and the contents of application-

specific protocols.

Our approach is similar to these techniques be-

cause it characterizes the benign, normal use of

specific programs, that is, server-side web-based

applications. However, our approach is different

from these techniques in two ways. First of all,
we use a number of different models to character-

ize the parameters used in the invocation of the

server-side programs. By using multiple models it

is possible to reduce the vulnerability of the detec-

tion process with respect to mimicry attacks

[47,43]. Second, the models target specific types

of applications, and, therefore, they allow for

more focused analysis of the data transferred be-
tween the client (the attacker) and the server-side

program (the victim). This is an advantage of

application-specific intrusion detection in general

[24] and of web-based intrusion detection in partic-

ular [25].

The detection of web-based attacks has recently

received considerable attention because of the

increasingly critical role that web-based services
are playing. For example, in [1] the authors present

a system that analyzes web logs looking for pat-

terns of known attacks. A different type of analysis

is performed in [2] where the detection process is

integrated with the web server application itself.

In [45], a misuse-based system that operates on

multiple event streams (i.e., network traffic, system

call logs, and web server logs) was proposed. Sys-
tems that focus on web-based attacks show that by

taking advantage of the specificity of a particular

application domain it is possible to achieve better



4 C. Kruegel et al. / Computer Networks xxx (2005) xxx–xxx

ARTICLE IN PRESS
detection results. However, these systems are

mostly misuse-based and therefore suffer from

the problem of not being able to detect attacks

that have not been previously modeled. Our ap-

proach is similar to these systems because it fo-
cuses on specific applications. However, the goal

of our system is to perform unsupervised, learn-

ing-based anomaly detection. The system can be

deployed on a host that contains custom-devel-

oped server-side programs and it is able to auto-

matically derive models of the normal invocation

of these programs. These models are then used to

detect known and unknown attacks.
3. Data model

Our anomaly detection approach analyzes

HTTP requests as logged by most common web

servers (for example, Apache [3]). The analysis fo-

cuses on requests that use parameters to pass val-
ues to server-side programs or active documents.

More formally, the input to the detection process

consists of an ordered set U = {u1,u2, . . . ,um} of

URIs extracted from successful GET requests

(requests whose return code is greater or equal

to 200 and less than 300).

A URI ui can be expressed as the composition of

the path to the desired resource (pathi), an optional
path information component (pinfoi), and an op-

tional query string (q). The query string is used to

pass parameters to the referenced resource and it

is identified by a leading ‘‘?’’ character. A query

string consists of an ordered list of n pairs of

parameters (or attributes) with their corresponding

values. That is, q = (a1,v1), (a2,v2), . . . , (an,vn)
where ai 2 A, the set of all attributes, and vi is a
string. The set Sq is defined as the subset {aj, . . . ,ak}
of attributes of query q. Fig. 1 shows an example of
Fig. 1. Sample web serve
an entry from a web server log and the correspond-

ing elements that are used in the analysis. For this

example query q, Sq = {a1,a2}.

The analysis process focuses on the association

between programs, parameters, and their values.
URIs that do not contain a query string are irrel-

evant, and, therefore, they are removed from U. In

addition, the set of URIs U is partitioned into sub-

sets Ur according to the resource path. Therefore,

each referenced program r is assigned a set of cor-

responding queries Ur. The anomaly detection

algorithms are independently run on each set of

queries Ur. This means that the modeling and
detection processes are performed separately for

each program r.

In the following text, the term ‘‘request’’ refers

only to requests with queries. Also, the terms

‘‘parameter’’ and ‘‘attribute’’ of a query are used

interchangeably.
4. Detection models

The anomaly detection process uses a number

of different models to identify anomalous entries

within a set of input requests Ur associated with

a program r. A model is a set of procedures used

to evaluate a certain feature of a query. Such a fea-

ture can be related to a single query attribute (e.g.,
the string length of a particular attribute value), to

all query attributes (e.g., the order of attributes in

a query), or to some relationship between a query

and others in Ur (e.g., time delay between consec-

utive queries). Each model is associated with a

query (or one of its attributes) by means of a pro-

file. Consider, for example, the attribute length

model, which analyzes a feature of a particular
query attribute (in this case, the string lengths of

this attribute). The attribute length model could
r access log entry.



C. Kruegel et al. / Computer Networks xxx (2005) xxx–xxx 5

ARTICLE IN PRESS
be associated with the username attribute of a login

program. In this case, the profile for the attribute

length model captures the ‘‘normal’’ string length

of the user name attribute of the login program.

The task of a model is to assign a probability
value to either a query as a whole or one of the

query�s attributes. This probability value reflects

the probability of the occurrence of the given fea-

ture value with regards to an established profile.

The assumption is that feature values with a suffi-

ciently low probability (i.e., abnormal values) indi-

cate a potential attack.

Based on the model outputs, a query is either
reported as a potential attack or as normal. This

decision is reached by calculating a number of

anomaly scores: one for the query itself, and one

for each attribute. A query is reported as anoma-

lous if at least one of these anomaly scores is above

the corresponding detection threshold (detection

thresholds are established during a training phase,

as described below). Although alerting on a single
anomalous attribute seems excessively cautious, it

is necessary to prevent attackers from hiding a

single malicious attribute in a query with many

‘‘normal’’ attributes.

The anomaly score for a query (or one its attri-

butes) is derived from the probability values re-

turned by the models that are associated with the

query (or attribute). The anomaly score value is
calculated using a weighted sum as shown in Eq.

(1). In this equation, wm represents the weight

associated with model m, while pm is its returned

probability value. The probability pm is subtracted

from 1 because a value close to zero indicates an

anomalous event that should yield a high anomaly

score. In our experiments, only weights of 1 were

used, meaning that all models were considered
equal

Anomaly Score ¼
X

m2Models

wm � ð1� pmÞ: ð1Þ

A model can operate in one of two modes,

training or detection. The training phase is re-

quired to determine the characteristics of normal
events and to establish anomaly score thresholds

to distinguish between regular and anomalous in-

puts. This phase is divided into two steps. During

the first step, the system creates profiles for each
server-side program and each of its attributes.

During the second step, suitable thresholds are

established. This is done by evaluating queries

and their attributes using previously created

profiles.
For each program and its attributes, the highest

anomaly score is stored and the threshold is set to

a value that is a certain, adjustable percentage

higher than this maximum. By modifying this va-

lue, the user can perform a trade-off between the

number of false positives and the expected detec-

tion accuracy. Because we assume that only nor-

mal queries are processed during the training
phase, a threshold that is at least as large as the

highest anomaly score is selected. In addition, to

add a small safety margin, a somewhat higher va-

lue is recommended. As a default safety margin

(also used in the experiments), we set a threshold

that is 10% larger then the maximum anomaly

score seen during training. Although different

thresholds might yield better results for particular
data sets, we wanted to evaluate our system with a

reasonable default setting. In addition, the number

of queries and attributes that are utilized to learn

the profiles and the thresholds is determined by an-

other adjustable parameter (with a default setting

of 1000).

Once the models have learned the characteris-

tics of normal events and suitable thresholds have
been derived system switches to detection mode. In

this mode, anomaly scores are calculated and

anomalous queries are reported.

The following sections describe the algorithms

that analyze the features that are considered rele-

vant for detecting malicious activity. For each

algorithm, the learning and training phases are

discussed.

4.1. Attribute length

The length of a query attribute can be used to

detect anomalous requests, especially when para-

meters are either fixed-size tokens (such as session

identifiers) or short strings derived from human in-

put (such as fields in an HTML form). In these
cases, the length of the parameter values does

not vary much between requests associated with

a certain program. The situation may look



6 C. Kruegel et al. / Computer Networks xxx (2005) xxx–xxx

ARTICLE IN PRESS
different when malicious input is passed to the pro-

gram. For example, to overflow a buffer in a target

application, it is necessary to ship the shell code

and additional padding, depending on the length

of the target buffer. Therefore, the attribute may
contain up to several hundred bytes. As another

example, cross-site scripting attacks, which at-

tempt to include scripts in pages whose content is

determined by user-supplied data, may require an

amount of data to be sent that can significantly

exceed the length of legitimate parameters.

The goal of this model is to approximate the ac-

tual but unknown distribution of the parameter
lengths and detect instances that significantly devi-

ate from the observed normal behavior. Clearly,

we cannot expect that the probability density func-

tion of the underlying real distribution will follow

a smooth curve. We also have to assume that the

distribution has a large variance. Nevertheless,

the model should be able to efficiently identify sig-

nificant deviations.

4.1.1. Learning

We approximate the mean _l and the variance _r2

of the real attribute length distribution by calculat-

ing the sample mean l and the sample variance r2

for the lengths l1, l2, . . . , ln of the parameters pro-

cessed during the learning phase (assuming that n

queries with this attribute were processed). The
cost of building this model is low. It is propor-

tional to the number of queries n analyzed during

the training phase as the mean and variance of the

corresponding string lengths need to be calculated.

4.1.2. Detection

Given the estimated query attribute length dis-

tribution with parameters l and r2 as determined
by the previous learning phase, it is the task of

the detection phase to assess the anomaly of a

parameter with length l.

To assess the anomaly of a string with length l,

we calculate the ‘‘distance’’ of the length l from the

mean value l of the length distribution. This dis-

tance is expressed with the help of the Chebyshev

inequality [15], shown in Eq .(2). The Chebyshev
inequality puts, for an arbitrary distribution with

variance r2 and mean l, an upper bound on the

probability that the difference between the value
of a random variable x and l exceeds a certain

threshold t

pðjx� lj > tÞ < r2

t2
: ð2Þ

When l is far away from l, considering the vari-

ance of the length distribution, then the probabil-

ity of any (legitimate) string x having a greater

length than l should be small. Thus, to obtain

a quantitative measure of the distance between
a string of length l and the mean l of the length

distribution, we substitute t with the difference

between l and l.

Only strings with lengths that exceed l are as-

sumed to be malicious. This is reflected in our

probability calculation as only the upper bound

for strings that are longer than the mean is rele-

vant. Note that an attacker cannot disguise mali-
cious input by padding the string and thus

increasing its length, because an increase in length

can only reduce the probability value.

The probability value p(l) for a string with

length l, given that l P l, is calculated as shown

below. For strings shorter than l, p(l) = 1

pðjx� lj > jl� ljÞ < pðlÞ ¼ r2

ðl� lÞ2
: ð3Þ

We chose the Chebyshev inequality as an effi-
cient metric to model decreasing probabilities for

strings with lengths that increasingly exceed the

mean. This technique is efficient because it is only

necessary to determine the length of the input

string followed by a simple computation.

In contrast to schemes that define a valid inter-

val (e.g., by recording all strings encountered dur-

ing the training phase), the Chebyshev inequality
takes the variance of the data into account and

provides the advantage of gradually changing

probability values (instead of providing a simple

‘‘yes/no’’ answer). In general, the bound computed

by the Chebyshev inequality is weak. Applied to

our model, this weak bound results in a high de-

gree of tolerance to deviations of attribute lengths

given an empirical mean and variance. Although
such a property is undesirable in many situations,

in this case it is useful to flag only significant

outliers.



C. Kruegel et al. / Computer Networks xxx (2005) xxx–xxx 7

ARTICLE IN PRESS
4.2. Attribute character distribution

The attribute character distribution model cap-

tures the concept of a ‘‘normal’’ or ‘‘regular’’

query parameter by looking at its character distri-
bution. The approach is based on the observation

that attributes have a regular structure, are mostly

human-readable, and almost always contain only

printable characters. In case of attacks that send

binary data (e.g., buffer overflow attacks), a com-

pletely different character distribution can be ob-

served. This is also true for attacks that send

many repetitions of a single character (e.g., a dot
character in directory traversal exploits).

A large percentage of characters in regular attri-

butes are drawn from a small subset of the 256

possible 8-bit values (mainly from letters, num-

bers, and a few special characters). As in English

text, the characters are not uniformly distributed,

but occur with different frequencies. Obviously, it

cannot be expected that the frequency distribution
is identical to a standard English text. Even the

frequency of a certain character (e.g., the

frequency of the letter ‘‘e’’) varies considerably

between different attributes. Nevertheless, there

are similarities between the character frequencies

of query parameters.

This becomes apparent when the relative fre-

quencies for all possible 256 characters in a string
are sorted in descending order. In the following,

the sorted, relative character frequencies of an

attribute are called its character distribution.

The character distribution of an attribute that

is perfectly normal (i.e., non-anomalous) is called

the attribute�s idealized character distribution

(ICD).

By sorting the relative frequency values, the
connection between individual characters and their

relative frequencies are lost. That is, it does not

matter whether the character with the most occur-

rences is an ‘‘a’’ or a ‘‘/’’. For example, consider

the parameter string ‘‘passwd’’ with the corre-

sponding ASCII values of ‘‘112 97 115 115 119

100’’. The absolute frequency distribution is 2 for

115 and 1 for the four others. When these absolute
counts are transformed into sorted, relative fre-

quencies, the resulting values are 0.33, 0.17, 0.17,

0.17, 0.17 followed by 0 occurring 251 times. The
same sorted, relative frequencies would be ob-

tained from the string ‘‘aabcde’’.

For an attribute of a legitimate query, one can

expect that the relative frequencies slowly decrease

in value. In human-readable tokens, similar to
English text, there are certain characters that ap-

pear more often than others, but there is no one

that is clearly more prevalent than others. More-

over, when random identifiers are used, no charac-

ter appears significantly more often then others,

resulting in a nearly uniform character distribu-

tion. In case of malicious input, however, the fre-

quencies often drop extremely fast. This can be
the result of a certain padding character that is re-

peated many times in a buffer overflow attack or

because of the many occurrences of the dot charac-

ter in a directory traversal attempt.

4.2.1. Learning

The idealized character distribution is deter-

mined during the training phase. For each ob-
served query attribute, its character distribution

is stored. The idealized character distribution is

then approximated by calculating the average of

all stored character distributions. This is done by

setting ICD(n) to the mean of the nth entry of

the stored character distributions "n: 0 6

n 6 255. Because all individual character distribu-

tions sum up to unity, their average will do so as
well, and the idealized character distribution is

well-defined.

This calculation is efficient and linear in the

number of attributes that are analyzed during the

training phase. For each attribute, the character

distribution has to be determined, an operation

which has a cost that is proportional to the length

of the attribute string, incurred by sorting the
characters in the string.

4.2.2. Detection

Given an idealized character distribution ICD,

the task of the detection phase is to determine

the probability that the character distribution of

a query attribute is an actual sample drawn from

its ICD. This probability, or more precisely, the
confidence in the hypothesis that the character dis-

tribution is a sample from the idealized character

distribution, is calculated by a statistical test. The



8 C. Kruegel et al. / Computer Networks xxx (2005) xxx–xxx

ARTICLE IN PRESS
detection algorithm is based on a variant of the

Pearson v2-test as the ‘‘goodness-of-fit’’ test [4].

The v2-test requires that the function domain is

divided into a small number of intervals, or bins,

and it is preferable that all bins contain at least
‘‘some’’ elements (the literature considers five ele-

ments to be sufficient for most cases). Although

the test is sensitive to the choice of the bins, most

reasonable choices of bins produce similar (though

not identical) results [40]. As a reasonable choice

of bins, we have selected the six bins for the do-

main of ICD as follows: {[0], [1, 3], [4, 6], [7, 11],

[12,15], [16,255]}. Although the choice of these
six bins is somewhat arbitrary, it reflects the fact

that the relative frequencies are sorted in descend-

ing order. Therefore, the values of ICD(x) are

higher when x is small, and thus all bins contain

some elements with a high probability.

When a new query attribute is analyzed, the

number of occurrences of each character in the

string is determined. Afterward, the values are
sorted in descending order and combined by

aggregating values that belong to the same bin.

The v2-test is then used to calculate the probability

that the given sample has been drawn from the

idealized character distribution as follows:

1. Calculate the observed and expected frequencies.

The observed values Oi (one for each bin) are
already given. The expected number of occur-

rences Ei are calculated by multiplying the rela-

tive frequencies of each of the six bins as

determined by the ICD times the length of the

attribute (i.e., the length of the string).

2. Compute the v2-value as v2 ¼
Pi<6

i¼0ðOi � EiÞ2=
Ei—note that i ranges over all six bins.

3. Determine the degrees of freedom and obtain the

significance. The degrees of freedom for the v2-
test is five in our case (the number of bins minus

1). The actual probability p that the sample is

derived from the idealized character distribu-

tion is read from a predefined table using the

v2-value as index.

The derived value p is used as the return value
for this model. When the probability that the sam-

ple is drawn from the idealized character distribu-

tion increases, p increases as well. The cost of
checking an input string using this model is the cal-

culation of the v2-value. This requires that the

character distribution for the input string is calcu-

lated (with a cost that is linear in the number of

characters of the string), followed by a constant
cost for the v2-test (namely, a few computations

and a table lookup).
4.3. Structural inference

Often, the manifestation of an exploit is imme-

diately visible in query attributes as unusually long

parameters or parameters that contain repetitions
of non-printable characters. Such anomalies are

easily identifiable by the two models explained

before.

There are situations, however, when an attacker

is able to craft her attack in a manner that makes

its manifestation appear more regular. For exam-

ple, non-printable characters can be replaced by

groups of printable characters. In such situations,
we need a more detailed model of the query attri-

bute that contains the evidence of the attack. This

model can be acquired by analyzing the parame-

ter�s structure. For our purposes, the structure of

a parameter is the regular grammar that describes

all of its legitimate values.

The structural inference model is useful for

detecting all kinds of attacks that require the
parameter string to have a different structure than

regular query arguments. This includes buffer

overflow, directory traversal, and cross-site script-

ing attacks. Depending on the structure of regular

arguments, it can also identify attacks that exploit

errors in the program logic.
4.3.1. Learning

When structural inference is applied to a query

attribute, the resulting grammar must be able to

produce at least all training examples. Unfortu-

nately, there is no unique grammar that can be de-

rived from a set of input elements. When no

negative examples are given (i.e., elements that

should not be derivable from the grammar), it is

always possible to create either a grammar that
contains exactly the training data or a grammar

that allows production of arbitrary strings.



Start

a | p(a) = 0.5
b | p(b) = 0.5

0.3

a | p(a) = 1

0.7

Terminal

0.4

0.2

c | p(c) = 1

0.4

b | p(b) = 1

1.0

1.01.0

Fig. 2. Markov model example.

C. Kruegel et al. / Computer Networks xxx (2005) xxx–xxx 9

ARTICLE IN PRESS
The basic approach used for our structural

inference is to generalize the grammar as long as

it seems to be ‘‘reasonable’’ and stop before too

much structural information is lost. The notion

of ‘‘reasonable generalization’’ is specified with
the help of Markov models and Bayesian

probability.

In a first step, we consider the set of training

queries as the output of a probabilistic grammar.

A probabilistic grammar is a grammar that assigns

probabilities to each of its productions. This means

that some words are more likely to be produced

than others, which fits well with the evidence gath-
ered from query parameters. Some values appear

more often, and this is important information that

should not be lost in the modeling step.

A probabilistic regular grammar can be trans-

formed into a non-deterministic finite automaton

(NFA). Each state S of the automaton has a set

of nS possible output symbols o which are emitted

with a probability of pS(o). Each transition t is
marked with a probability p(t) that characterizes

the likelihood that the transition is taken. An

automaton that has probabilities associated with

its symbol emissions and its transitions can also

be considered a Markov model.

The output of the Markov model consists of all

paths from its start state to its terminal state. A

probability value can be assigned to each output
word w (that is, a sequence of output symbols

o1,o2, . . . ,ok). This probability value (as shown in

Eq. (4)) is calculated as the sum of the probabilities

of all distinct paths through the automaton that

produce w. The probability of a single path is the

product of the probabilities of the emitted symbols

pSiðoiÞ and the taken transitions p(ti). The proba-

bilities of all possible output words w sum up to 1

pðwÞ ¼ pðo1; o2; . . . ; okÞ

¼
X

ðpaths p for wÞ

Y
ðstates 2 pÞ

pSiðoiÞ � pðtiÞ: ð4Þ

For example, consider the NFA in Fig. 2. To

calculate the probability of the word ‘‘ab’’, one

has to sum the probabilities of the two possible

paths (one that follows the left arrow and one that

follows the right one). The start state emits no sym-

bol and has a probability of 1. Following Eq. (4),

the result is
pðwÞ ¼ ð1:0 � 0:3 � 0:5 � 0:2 � 0:5 � 0:4Þ
þ ð1:0 � 0:7 � 1:0 � 1:0 � 1:0 � 1:0Þ

¼ 0:706: ð5Þ

The goal of the structural inference process is to

find an NFA that has the highest likelihood for the

given training elements. An excellent technique to

derive a Markov model from empirical data is

explained in [41]. It uses the Bayesian theorem

to state this goal as:

pðModeljTrainingDataÞ

¼ pðTrainingDatajModelÞ � pðModelÞ
pðTrainingDataÞ : ð6Þ

The probability of the training data is consid-

ered a scaling factor in Eq. (6) and it is subse-

quently ignored. As we are interested in

maximizing the a posteriori probability (i.e., the

left-hand side of the equation), we have to maxi-

mize the product shown in the enumerator on

the right-hand side of the equation. The first
term—the probability of the training data given

the model—can be calculated for a certain autom-

aton by adding the probabilities calculated for

each input training element as discussed above.

The second term—the prior probability of the

model—is not as straightforward. It has to reflect



10 C. Kruegel et al. / Computer Networks xxx (2005) xxx–xxx

ARTICLE IN PRESS
the fact that, in general, smaller models are pre-

ferred. The model probability is calculated heuris-

tically and takes into account the total number of

states N as well as the number of transitionsP
Strans and emissions

P
Semit at each state S.

This is justified by the fact that smaller models

can be described with less states as well as fewer

emissions and transitions. The actual value is

derived as shown in Eq. (7)

pðModelÞa 1

Q
S2States

ðN þ 1Þ
P
S

trans

� ðN þ 1Þ
P
S

emit
:

ð7Þ

The term that is maximized—the product of the

probability of the model given the data, times

the prior probability of the model itself—reflects

the intuitive idea that there is a conflict between

simple models that tend to over-generalize and

models that perfectly fit the data but are too com-

plex. By maximizing the product, the Bayesian
model induction approach creates automations

that generalize enough to reflect the general struc-

ture of the input without discarding too much

information.

The model building process starts with an

automaton that exactly reflects the input data

and then gradually merges states. This state merg-

ing is continued until the a posteriori probability
no longer increases. The cost of building the struc-

tural inference model in this straightforward fash-

ion is O((n * l)3), where n is the number of input

strings analyzed during the training phase and l

is their maximum length. This cost is clearly pro-

hibitive. The reason is that the Markov model

could contain up to (n * l) states, resulting in

(n * l)(n * l � 1)/2 comparisons for each merging
step in which every state needs to be compared

with every other state. Because it is possible that

the merging continues until only one state is left,

up to (n * l � 1) merging steps might required.

There are a number of optimizations such as the

Viterbi path approximation and the path prefix

compression that can be applied to make that pro-

cess effective [41,42]. Using these optimizations,
and by introducing intermediate state merging

steps, the learning cost can be reduced to
O(n * l2), which is acceptable even for large n and

reasonable values of l.

4.3.2. Detection

Once the Markov model has been built, it can
be used by the detection phase to determine the

probability of query attributes. The probability

of an attribute is calculated in a way similar to

the likelihood of a training item as shown in Eq.

(4). The problem is that even legitimate input that

has been regularly seen during the training phase

may receive a very small probability value, because

the probability values of all possible input words
sum up to 1. Therefore, we chose to have the mod-

el return a probability value of 1 if the word is a

valid output from the Markov model and a value

of 0 when the value cannot be derived from the

given grammar. The cost of checking whether the

input string can be derived from the Markov

model is linear in the length of the string.
4.4. Token finder

The purpose of the token finder model is to

determine whether the values of a certain query

attribute are drawn from a limited set of possible

alternatives (i.e., they are tokens of an enumera-

tion). Web applications often require one out of

a few possible values for certain query attributes,
such as flags or indices. When a malicious user at-

tempts to use these attributes to pass illegal values

to the application, the attack can be detected. For

arguments that can only take a limited number of

legitimate values, the token finder model can be

used to detect any attack that requires a different

value to be passed. When no enumeration can be

identified, it is assumed that the attribute values
are random and no attacks can be detected by this

model.
4.4.1. Learning

The classification of an argument as enumera-

tion or as random value is based on the observa-

tion that the number of different occurrences of

parameter values is bound by some unknown
threshold t in the case of an enumeration while it

is unrestricted in the case of random values.



C. Kruegel et al. / Computer Networks xxx (2005) xxx–xxx 11

ARTICLE IN PRESS
When the number of different argument in-

stances grows proportional to the total number

of argument instances, the use of random values

is indicated. If such an increase cannot be ob-

served, we assume an enumeration. More for-
mally, to decide if argument a is an enumeration,

we calculate the statistical correlation q between

the values of the functions f and g for increasing

numbers 1, . . . , i of occurrences of a. The functions
f and g are defined as follows on N0:

f ðxÞ ¼ x; ð8Þ

gðxÞ¼
gðx�1Þþ1; if the xth value for a is new;

gðx�1Þ�1; if the xth value was seen before;

0; if x¼ 0:

8><
>:

ð9Þ

The correlation parameter q is derived after the

training data has been processed. It is calculated

from f and g with their respective variances Var(f),

Var(g) and the covariance Covar(f,g) as shown

below

q ¼ Covarðf ; gÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðf Þ � VarðgÞ

p : ð10Þ

If q is less than 0, then f and g are negatively

correlated and an enumeration is assumed. This

is motivated by the fact that, in this case, increas-

ing function values of f (reflecting the increasing
number of analyzed parameters) correlate with

decreasing values of g(x) (reflecting the fact that

many argument values for a have previously oc-

curred). In the opposite case, where q is greater

than 0, the values of a have shown sufficient vari-

ation to support the hypothesis that they are not

drawn from a small set of predefined tokens. When

an enumeration is assumed, the complete set of
identifiers is stored for use in the detection phase.

The cost of building the token finder model is

the calculation of the covariance between two sim-

ple functions. This cost depends on the number of

queries analyzed.
4.4.2. Detection

Once it has been determined that the values of a
query attribute are tokens drawn from an enumer-

ation, any new value is expected to appear in the
set of known values. When this happens, 1 is re-

turned. If the value is not in the established set

of values, 0 is returned. If it has been determined

that the parameter values are random, the model

always returns 1. The detection is efficiently per-
formed by this model using a hash table lookup.

4.5. Attribute presence or absence

Most of the time, server-side programs are not

directly invoked by users typing the input parame-

ters into the URIs themselves. Instead, client-side

programs, scripts, or HTML forms pre-process
the data and transform it into a suitable request.

This processing step usually results in a high regu-

larity in the number, name, and order of parame-

ters. Empirical evidence shows that hand-crafted

attacks focus on exploiting a vulnerability in the

code that processes a certain parameter value,

and little attention is paid to the order or

completeness of the parameters.
The analysis performed by this model takes

advantage of this fact and detects requests that

deviate from the way parameters are presented

by legitimate client-side scripts or programs. This

type of anomaly is detected using two different

algorithms. The first one, described in this section,

deals with the presence and absence of attributes ai
in a query q. The second one is based on the rela-
tive order of parameters and is further discussed in

Section 4.6. These models focus on two features

that consider all query attributes simultaneously.

This is different from the four previous ones, which

focus on features of individual query arguments.

The algorithm discussed hereinafter assumes

that the absence or abnormal presence of one or

more parameters in a query might indicate mali-
cious behavior. In particular, if an argument

needed by a server-side program is missing, or if

mutually exclusive arguments appear together,

then the request is considered anomalous. This al-

lows for the detection of attacks where server-side

applications are probed or exploited by sending

incomplete or malformed requests.

4.5.1. Learning

The test for presence and absence of parameters

creates a model of acceptable subsets of attributes



12 C. Kruegel et al. / Computer Networks xxx (2005) xxx–xxx

ARTICLE IN PRESS
that appear simultaneously in a query. This is done

by recording each distinct subset Sq = {ai, . . . ,ak}
of attributes that is seen during the training phase.

The process is efficient as at most one value needs

to be inserted into a hash table for each query
encountered during the learning phase.
4.5.2. Detection

During the detection phase, the algorithm per-

forms for each query a lookup of the current attri-

bute set. When the set of parameters has been

encountered during the training phase, 1 is re-

turned, otherwise 0. This is done using a hash table
lookup.
4.6. Attribute order

As discussed in the previous section, legitimate

invocations of server-side programs often contain

the same parameters in the same order. Program

logic is usually sequential, and, therefore, the rela-
tive order of attributes is preserved even when

parameters are omitted in certain queries. This is

not the case for hand-crafted requests, as the order

chosen by a human can be arbitrary and has no

influence on the execution of the program.

The test for parameter order in a query deter-

mines whether the given order of attributes is con-

sistent with the model deduced during the learning
phase.
4.6.1. Learning

The order constraints between all k attributes

(ai: "i = 1, . . . ,k) of a query are determined during

the training phase. An attribute as of a program

precedes another attribute at when as and at appear

together in the parameter list of at least one query
and as comes before at in the ordered list of attri-

butes of all queries where they appear together.

This definition allows one to introduce the order

constraints as a set of attribute pairs O such that:

O ¼ fðai; ajÞ : ai precedes aj and
ai; aj 2 ðSqj : 8j ¼ 1; . . . ; nÞg: ð11Þ

The set of attribute pairs O is determined as fol-

lows. Consider a directed graph G that has a num-
ber of vertices equal to the number of distinct

attributes. Each vertex vi in G is associated with

the corresponding attribute ai. For every query

qj, with j = 1, . . . ,n, that is analyzed during the

training period, the ordered list of its attributes
a1,a2, . . . ,ai is processed. For each attribute pair

(as,at) in this list, with s 5 t and 1 6 s, t 6 i, a di-

rected edge is inserted into the graph from vs to vt.

At the end of the learning process, the graph G

contains all order constraints imposed by queries

in the training data. The order dependencies be-

tween two attributes are represented either by a di-

rect edge connecting their corresponding vertices,
or by a path over a series of directed edges. At this

point, however, the graph could potentially con-

tain cycles as a result of precedence relationships

between attributes derived from different queries.

As such relationships are impossible, they have

to be removed before the final order constraints

can be determined. This is done with the help of

Tarjan�s algorithm [44] which identifies all strongly
connected components (SCCs) of a graph. For

each component, all edges connecting vertices of

the same SCC are removed. The resulting graph

is acyclic and can be utilized to determine the set

of attribute pairs O which are in a ‘‘precedes’’ rela-

tionship. This is obtained by enumerating for each

vertex vi all its reachable nodes vg, . . . ,vh in G, and

adding the pairs (ai,ag) � � � (ai,ah) to O.
The cost for running Tarjan�s algorithm is

O(v + e), where v is bound by the number of differ-

ent parameters that a program can take. Because

this value is usually very small, the model can be

built efficiently.

4.6.2. Detection

The detection process checks whether the attri-

butes of a query satisfy the order constraints deter-

mined during the learning phase. Given a query

with attributes a1,a2, . . . ,ai and the set of order

constraints O, all the parameter pairs (aj,ak) with
j 5 k and 1 6 j, k 6 i are analyzed to detect poten-

tial violations. A violation occurs when for any

single pair (aj,ak), the corresponding pair with

swapped elements (ak,aj) is an element of O. In

such a case, the algorithm returns an anomaly

score of 0, otherwise it returns 1. The detection

cost for this model are i hash table lookups, where



C. Kruegel et al. / Computer Networks xxx (2005) xxx–xxx 13

ARTICLE IN PRESS
i is the number of parameters of the analyzed

query.

4.7. Access frequency

Different server-side applications are invoked

with different frequencies, but the general access

patterns for these applications remain relatively

constant for a certain web site. The goal of the ac-

cess frequency model is to capture these access pat-

terns. This model and the following two are

different from the previous models with respect

to the analyzed features. While the previous mod-
els concentrate on individual queries and their

attributes, this and the next two models focus on

patterns of whole sequences of queries.

One feature of an access sequence is the fre-

quency of program invocations. We distinguish

between two types of access frequencies for each

application. One is the frequency of the applica-

tion being accessed from a certain client (based
on the IP address), the other is the total frequency

of all accesses. Consider the example of a web site

with two scripts, one to authenticate users before

they can access restricted parts and one to allow

people to search the content of the pages. In this

case, one would expect that the authentication

script is called very infrequently for each individ-

ual client, because it is only necessary to login
once. However, when the web site is accessed by

many clients, the total access frequency for this lo-

gin script is high. The search script, on the other

hand, is accessed in bursts by an individual user

who is looking for some information, and thus,

the access frequency is high for this particular cli-

ent. But most users do not use the search function-

ality because they know what to look for, and
therefore, the total access frequency for the search

script is low.

Changes in access patterns can indicate attacks.

When an application is usually accessed infre-

quently but is suddenly exposed to a burst of invo-

cations, this increase could be the result of an

attacker probing for vulnerabilities or the result

of an exploit that has to guess parameter values.
A single determined attacker can evade detection

by executing his actions slowly enough to keep

the frequency low. However, most tools used by
less skilled intruders execute brute force attacks

without stealthiness in mind. Also, when the

knowledge of a vulnerability becomes more wide-

spread, many attackers independently attempt to

exploit the vulnerability and raise the total fre-
quency to a suspicious level.

4.7.1. Learning

To determine the expected normal access fre-

quencies, the time period between the first and

the last query in the training data is divided into

consecutive time intervals of a fixed size (10 s in

our implementation). Then, the total number of
requests and the numbers of requests from distinct

clients (or, more precisely, distinct IP addresses)

are counted in each of these intervals. The counts

for the total accesses and the counts for the acces-

ses from distinct clients form two distributions

with their respective means and variances. These

two distributions are used during the detection

phase, similarly to the attribute length model.
The cost of building this model is proportional

to the number of requests that are analyzed during

the training period.

4.7.2. Detection

During detection, time is divided into intervals

of the same fixed size that was used during the

learning phase. When a query is evaluated, the
number of total requests n1 and the number of re-

quests from this client n2, both in the current time

interval, are determined. Similar to the detection

phase of the attribute length model (see Section

4.1), the Chebyshev inequality is used to calculate

the probability of n1, given the distribution of the

total access frequencies, and the probability of

n2, given the access frequencies from distinct cli-
ents. The two probabilities are then added, the

sum is divided by two and returned.

The detection cost is proportional to the num-

ber of requests during the current detection inter-

val, as it is necessary to obtain the values n1 and

n2 before the Chebyshev inequality can be applied.

4.8. Inter-request time delay

Abnormal client access patterns are often a sign

that web servers or web applications are the target



14 C. Kruegel et al. / Computer Networks xxx (2005) xxx–xxx

ARTICLE IN PRESS
of surveillance or attack by malicious clients. One

instance of such an access pattern is a set of re-

quests that exhibit a regular delay between each

successive request. This type of pattern is typically

indicative of scripted probes or attacks against a
web service, while legitimate user web browsing

generally exhibits a wide variance in inter-request

time delays. This model attempts to detect devia-

tions from an expected distribution of time delays

for each protected web application to detect

scripted probes and attacks.
4.8.1. Learning

During the training phase, a distribution of

‘‘normal’’ time delays between successive client re-

quests is created. To obtain this normal time delay

distribution, the inter-request time delays are first

stored for each different client. Then, delay values

are put into small bins and the distributions for all

different clients are combined into a single distri-

bution by taking the average of the numbers in
each bin. This is done similarly to the character

distribution model (Section 4.2), where the individ-

ual character distributions are combined into the

idealized character distribution. The cost of this

model is, for each different client, linear in the

number of requests received from this client during

the learning phase.
4.8.2. Detection

During the detection phase, a distribution of

time delays between successive requests from each

client is compiled. The goal is then to determine

the probability that the observed time delays be-

tween successive requests is a sample from the

learned distribution. This is calculated using the

Pearson v2-test, similarly to the character distribu-
tion model.

The anomaly score that is returned by this mod-

el depends on two factors: the likelihood that an

observed distribution is a sample from the learned

expected distribution as described above, and

additionally the number of requests which have

been monitored from a specific client for that

application. The first consideration determines
how anomalous the time delay distribution ap-

pears, while the second determines how much con-
fidence should be placed in this anomaly score.

This is important because the quality of the score

produced depends on the number of requests that

have been observed for a particular combination

of client and application. Specifically, a small num-
ber of requests could produce a distribution that is

considered anomalous; however, because of the

small number of requests, one cannot conclude

with a high degree of confidence that this access

pattern is truly anomalous. Consequently, the

anomaly score output from this model is scaled

by a constant factor that increases with the num-

ber of observed requests. This scaling factor even-
tually reaches 1, and is thus effectively dropped,

once the observed distribution has reached a size

which is considered suitable for placing sufficient

confidence in the results of this model.

The detection cost is the computation needed

for the v2-test, which is proportional to the num-

ber of requests during the detection interval.

4.9. Invocation order

Web-based applications are often composed of

a set of server-side programs, which, together,

implement the application functionality. For

example, a shopping application may have a login

program to authenticate a user, a program to ac-

cess a catalog, a program to add items to a virtual
cart, and a program to perform checkout/pay-

ment. The nature of a web-based application

may impose a well-defined ordering over the invo-

cation of its component programs. For example, a

user has to first login before being able to perform

any other transaction.

This model captures the order of invocation of

web-based applications for a certain client (again,
based on the IP address). By characterizing the or-

der of invocation per client, the model attempts to

infer the regularity of the structure for a session,

which may be associated with specific credentials

(e.g., a cookie). The invocation order model is re-

lated to the structural inference model (see Section

4.3). The difference is that this model analyzes the

structure of a sequence of queries instead of the
syntax of the parameters of a simple query.

The model can be used to detect attacks against

the application logic. This includes, for example,



C. Kruegel et al. / Computer Networks xxx (2005) xxx–xxx 15

ARTICLE IN PRESS
situations where an attacker attempts to bypass a

login check and access a privileged program

directly.
4.9.1. Learning

During the learning phase, the program invoca-

tions are grouped according to the source IP of the

query (note that this is different from all other

models, where the characterization was performed

independently for each server-side application).

This grouping identifies sessions composed of a list

of program invocations. More precisely, a session

S is defined as the series of resource paths
hpath1, path2, . . . ,pathni associated with the corre-

sponding server-side program invocations. The

invocations that are part of a session are deter-

mined by a constraint on inter-arrival time (that

is, invocations that are close in time are aggregated

into a session).

The model building process starts with a non-

deterministic automaton that outputs exactly the
‘‘strings’’ that represent the sessions Si with their

corresponding sequences of program invocations

encountered during the training phase. Similar to

the process described in Section 4.3, the process

continues by gradually merging the states of this

automaton until its a posteriori probability (given

the training data) reaches a maximum. This final

automaton then represents all invocation se-
quences that are considered legal.

The learning cost of this model is similar to the

cost of the structural inference model (refer to Sec-

tion 4.3.1). In this case, however, the input are se-

quences of program accesses instead of sequences

of characters.
4.9.2. Detection

During the detection phase, a query q is associ-

ated with its corresponding session S. When this

session S can be derived from the automaton that

was built during the training phase, the output of

the model for q is 1. When S cannot be derived,

the result for q (and all subsequent queries associ-

ated with this session) is 0. The detection cost of

checking whether an access sequence can be pro-
duced by the Markov model is proportional to

the length of the input sequence.
5. Evaluation

This section discusses our approach to validate

the proposed models and to evaluate the detection

effectiveness of our system. That is, we assess the
capability of the models to accurately capture the

properties of the analyzed attributes and their abil-

ity to detect potentially malicious deviations.

The evaluation was performed using three data

sets. These data sets were Apache log files from a

production web server at Google, Inc. and from

two Computer Science Department web servers lo-

cated at the University of California, Santa Bar-
bara (UCSB) and the Technical University,

Vienna (TU Vienna).

We had full access to the log files of the two uni-

versities. However, the access to the log file from

Google was restricted because of privacy issues.

To obtain results for this data set, our tool was

run on our behalf locally at Google and the results

were mailed to us.
Table 2 provides information about important

properties of the data sets. The table shows the

time interval during which the data was recorded,

the log file size and the total number of HTTP que-

ries in the log file. In addition, it lists the number

of programs for which detection was performed

(i.e., those programs that were invoked more than

1000 times so that the training phase could be
completed) and the number of analyzed queries

and attributes.

5.1. Model validation

This section shows the validity of the claim that

our proposed models are able to accurately de-

scribe properties of query attributes. For this pur-
pose, our detection tool was run on the three data

sets to determine the distribution of the probabil-

ity values for the different models. The length of

the training phase was set to 1000 for this and all

following experiments. This means that our system

used the first thousand queries that invoked a cer-

tain server-side program to establish its profiles

and to determine suitable detection thresholds.
Figs. 3 and 4 show a distribution of the prob-

ability values that have been assigned to the

query attributes by the length and the character



Table 2

Data set properties

Data set Time interval Size (MByte) HTTP queries Programs Program requests Attributes

Google 1 h 236 640,506 3 490,704 1,611,254

UCSB 297 days 1001 9,951,174 2 4617 7993

TU Vienna 80 days 251 2,061,396 8 713,500 765,399

0.0001

0.001

0.01

0.1

1

0 0.2 0.4 0.6 0.8 1

R
el

at
iv

e 
N

um
be

r o
f A

ttr
ib

ut
e 

Va
lu

es

Probability Values

Google
UCSB

TU Vienna

Fig. 3. Attribute length.

0.0001

0.001

0.01

0.1

1

0 0.2 0.4 0.6 0.8 1

R
el

at
iv

e 
N

um
be

r o
f A

ttr
ib

ut
e 

Va
lu

es

Probability Values

Google
UCSB

TU Vienna

Fig. 4. Attribute character distribution.

16 C. Kruegel et al. / Computer Networks xxx (2005) xxx–xxx

ARTICLE IN PRESS
distribution models, respectively. The y-axis shows

the percentage of attribute values that appeared

with a specific probability. For the figures, we

aggregated the probability values (which are real

numbers in the interval between 0.0 and 1.0) into

ten bins, each bin covering an interval of 0.1. That

is, all probabilities in the interval [0.0,0.1) are

added to the first bin, values in the interval
[0.1,0.2) are added to the second bin, and so forth.

Note that a probability of 1 indicates a completely

normal event. The relative number of occurrences

are shown on a logarithmic scale.

Table 3 shows the number of attributes that have

been rated as normal (with a probability of 1) or as

anomalous (with a probability of 0) by the struc-

tural model and the token finder model. The table
also provides the number of queries that have been

classified as normal or as anomalous by the pres-

ence/absence model, the attribute order model,

the access frequency model, the inter-request time

delay model, and the invocation order model.

The distributions of the anomaly scores in Figs.

3 and 4, and Table 3 show that all models are

capable of capturing the normality of their corre-
sponding features. The vast majority of the ana-

lyzed attributes and queries are classified as

normal (reflected by an anomaly score close to

one in the figures) and only few instances deviate

from the established profiles. The graphs in Figs.

3 and 4 quickly drop from above 90% of ‘‘most

normal’’ instances in the last bin to values below

1%. It can be seen that the data collected by the
Google server shows the highest variability (espe-

cially in the case of the attribute length model).

This is due to the fact that the Google search string

is included in the distribution. Naturally, this

string, which is provided by users via their web

browsers to issue Google search requests, varies

to a great extent.

Note also that there are no values shown for
the access frequency model, the inter-request time

delay model, and the invocation order model in

the Google column. This is due to the fact that

these models require the IP addresses of the cli-

ents that issue the web requests. However, this

information was missing in the Google log file

because of anonymization efforts to protect

customer privacy.



Table 3

Probability values

Google UCSB TU Vienna

Normal Anomalous Normal Anomalous Normal Anomalous

Structure 1,595,516 15,738 7992 1 765,311 98

Token 1,603,989 7265 7974 19 765,039 370

Presence/absence 490,704 0 4616 1 713,425 75

Order 490,704 0 4617 0 713,500 0

Access frequency – – 4617 0 713,408 92

Inter-request time delay – – 4614 3 713,310 190

Invocation order – – 4561 56 704,394 9106

Table 4

False positive rates

Data set Number

of alerts

Number

of queries

False

positive rate

Alarms

per day

Google 206 490,704 0.000419 4944

UCSB 3 4617 0.000650 0.01

TU Vienna 137 713,500 0.000192 1.71

C. Kruegel et al. / Computer Networks xxx (2005) xxx–xxx 17

ARTICLE IN PRESS
5.2. Detection effectiveness

This section analyzes the number of hits and

false positives raised during the operation of our

tool. For the calculation of the anomaly scores

of a query and its attributes by means of Eq. (1),

all weights its were set to 1.

To assess the number of false positives that can
be expected when our system is deployed, the

intrusion detection system was run on our three

data sets. For this experiment, we assumed that

the training data contained no real attacks.

Although the original log files showed a significant

number of entries from Nimda or Code Red worm

attacks, these queries were excluded both from the

model building and detection process. This is due
to the fact that all three sites use the Apache

HTTP server, which fails to locate the targeted

vulnerable program and thus, fails to execute it.

As we only include queries that result from the

invocation of existing programs into the training

and detection process, these worm attacks were

ignored.

The false positive rate can be easily calculated
by dividing the number of reported anomalous

queries by the total number of analyzed queries.

The results are shown for each data set in Table 4.

The relative numbers of false positives are very

similar for all three sites, but the absolute numbers

differ tremendously, reflecting the different web

server loads. Although almost five thousand alerts

per day for the Google server appears to be a very
high number at a first glance, one has to take into

account that this is an initial result. The alerts are

the output produced by our system running with

default parameters. One approach to reduce the
number of false positives is to modify the training

and detection thresholds to account for the higher

variability in the Google traffic. Nearly half of the

number of false positives are caused by anomalous

search strings that contain instances of non-print-

able characters (probably requests issued by users

with incompatible character sets) or extremely

long strings (such as URLs directly pasted into
the search field). Another approach is to perform

post-processing of the output, maybe using a sig-

nature-based intrusion detection system to discard

anomalous queries with known deviations. In

addition, it is not completely impossible to deal

with this amount of alerts manually. One or two

full-time employees could browse the list of alerts,

quickly discarding obviously incorrect instances
and concentrating on the few suspicious ones.

When analyzing the output for the two univer-

sity log files, we encountered several anomalous

queries with attributes that were not malicious,

even though they could not be interpreted as cor-

rect in any way. For example, our tool reported

a character string in a field used by the application

to transmit an index. By discussing these queries
with the administrators of the corresponding sites,

it was concluded that some of the mistakes may

have been introduced by users that were testing

the system for purposes other than security.



18 C. Kruegel et al. / Computer Networks xxx (2005) xxx–xxx

ARTICLE IN PRESS
After estimating the false alarm rates, the detec-

tion capabilities of our tool were analyzed. For

this experiment, we used the data set of TU Vien-

na. We have chosen this data set for two reasons.

First, we had access to the log file and could ap-
pend new log file entries; something that was

impossible for the Google data set. Second, the

vulnerable programs that were attacked had al-

ready been installed at this site and were regularly

used. This allowed us to base the evaluation on

real-world training data.

We used eleven real-world exploits downloaded

from popular security sites [6,35,38] for our exper-
iment. The set of attacks consisted of a buffer over-

flow against phorum [34], a php message board,

and three directory traversal attacks against

htmlscript [32]. Two XSS (cross-site scripting)

exploits were launched against imp [17], a web-

based email client, and two XSS exploits against

csSearch [8], a search utility. Webwho [9], a

web-based directory service was compromised
using three variations of input validation errors.

All attacks were actually executed against the

TU Vienna web server, on which (patched) ver-

sions of the victim programs were installed. The

log entries that corresponded to the attacks were

then appended to the TU Vienna log file.

We also wanted to assess the ability of our sys-

tem to detect worms such as Nimda or Code Red.
However, as mentioned above, all log files were

created by Apache web servers. Apache is not vul-

nerable against the attacks, as both worms exploit

vulnerabilities in Microsoft�s Internet Information

Server (IIS). We solved the problem by installing a

Microsoft IIS server and, after manually creating

training data for the vulnerable program, launch-

ing a Code Red attack [5]. Then, we transformed
the IIS log into Apache format and appended
Table 5

Detection capabilities

Attack class Length Char. distr.

Buffer overflow x x

Directory traversal x

XSS (cross-site scripting) x x

Input validation

Code red x x
the log file entries for both the training and the

attack queries to the TU Vienna data set.

Finally, our system was run on the TU Vienna

log file, using the same thresholds that were used

to evaluate the false alarm rate for this data set.
All eleven attacks and the Code Red worm were

detected. Although the attacks were known to

us, all are based on existing code that was used

unmodified. In addition, the log entries that corre-

sponded to malicious queries were introduced into

the log files after the model algorithms were de-

signed and the false alarm rate was assessed. No

manual tuning or adjustment was necessary.
Table 5 shows the models that reported an

anomalous query or an anomalous attribute for

each class of attacks. It is evident that there is no

model that raises an alert for all attacks. This

underlines the importance of choosing and com-

bining different properties of queries and attributes

to cover a large number of possible attack venues.

Note that the access frequency model, the inter-re-
quest time delay model, and the invocation order

model could not contribute to the detection of

the injected attacks and, therefore, are not shown

in Table 5. The reason is that these models analyze

features of query sequences. However, only single

attacks were injected and no malicious sequences

were present. It also seemed unreasonable to create

artificial attack sequences, which would be inevita-
bly biased to our threat assumptions.

It can be seen that the length model, the charac-

ter distribution model, and the structural model

are very effective against a broad range of attacks

that inject a substantial amount of malicious pay-

load into an attribute string. Attacks such as buffer

overflow exploits (including the Code Red worm,

which bases its spreading mechanism on a buffer
overflow in Microsoft�s IIS) and cross-site script-
Structure Token Presence Order

x x

x

x x

x x

x



C. Kruegel et al. / Computer Networks xxx (2005) xxx–xxx 19

ARTICLE IN PRESS
ing attempts require a substantial amount of char-

acters, thereby increasing the attribute length

noticeably. Also, a human operator can easily tell

that a maliciously modified attribute does not

‘‘look right’’. This observation is reflected in its
anomalous character distribution and a structure

that differs from the previously established profile.

Input validation errors, including directory tra-

versal attempts, are harder to detect. The required

number of characters is smaller than the number

needed for buffer overflow or XSS exploits, often

in the range of the legitimate attribute. Directory

traversal attempts stand out because of the unu-
sual structure of the attribute string (repetitions

of slashes and dots). Unfortunately, this is not true

for input validation attacks in general. The three

attacks that exploit an error in Webwho did not re-

sult in an anomalous attribute for the character

distribution model or the structural model. In this

particular case, however, the token finder raised an

alert, because only a few different values of the
involved attribute were encountered during the

training phase.

The presence/absence and the parameter order

model can be evaded with little effort by an adver-

sary that has sufficient knowledge of the structure

of a legitimate query. Note, however, that the

available exploits used in our experiments resulted

in reported anomalies from at least one of the two
models in 8 out of 11 cases (one buffer overflow,

four directory traversal, and three input validation

attacks). We therefore decided to include these

models into our IDS, especially because of the

low number of false alarms they produce.

The results presented in this section show that

our system is able to detect a high percentage of at-

tacks with a very limited number of false positives
(all attacks, with less than 0.06% false alarms in

our experiments). Some of the attacks are also

detectable by signature-based intrusion detection

systems such as Snort, because they represent vari-

ations of known attacks (e.g., Code Red, buffer

overflows). Other attacks use malicious manipula-

tion of the query parameters, which signature-

based system do not notice. These attacks are
correctly flagged by our anomaly detection system.

A limitation of the system is its reliance on web

access logs. Attacks that compromise the security
of a web server before the logging is performed

may not be detected. The approach described in

[2] advocates the direct instrumentation of web

servers in order to perform timely detection of at-

tacks, even before a query is processed. This ap-
proach may introduce some unwanted delay in

certain cases, but if this delay is acceptable then

the system described here could be easily modified

to fit that model.
6. Conclusions

Web-based attacks should be addressed by

tools and techniques that compose the precision

of signature-based detection with the flexibility of

anomaly-based intrusion detection system.

This paper introduces a novel approach to per-

form anomaly detection of web-based attacks,

using as input HTTP queries containing parame-

ters. It is, to the best of our knowledge, the first
anomaly detection system specifically tailored to

the detection of web-based attacks, taking advan-

tage of application-specific correlation between

server-side programs and parameters used in their

invocation.

Ideally, the system will not require any installa-

tion-specific configuration and learns all query

characteristics from training data, even though
the level of sensitivity to anomalous data can be

configured via thresholds to suit different site pol-

icies. The system has been tested on data gathered

at Google, Inc. and two universities in the United

States and Europe, showing promising results.

Although the models presented here are specific

to the modeling of web-based attacks, our ap-

proach has been recently extended to cover the
detection of anomalous system call invocations

[23]. In this case, the parameters passed to a system

call are characterized in a way that is similar to the

one described in this paper. The use of multiple

models, composed with a sophisticated Bayesian

technique to compose their outputs [22], delivered

very good results. This shows that the learning-

based models described in this paper can be gener-
alized to other domains as well, and that their

application is not limited to the detection of web-

based attacks.



20 C. Kruegel et al. / Computer Networks xxx (2005) xxx–xxx

ARTICLE IN PRESS
Future work will focus on further decreasing

the number of false positives by refining the algo-

rithms developed so far, and by looking at addi-

tional features. The ultimate goal is to be able to

perform anomaly detection in real-time for web
sites that process millions of queries per day with

virtually no false alarms.
Acknowledgements

We would like to thank Urs Hoelzle from Goo-

gle, Inc. who made it possible to test our system on
log files from one of the world�s most popular web

sites.

This research was supported by the Army Re-

search Office, under agreement DAAD19-01-1-

0484. The views and conclusions contained herein

are those of the authors and should not be inter-

preted as necessarily representing the official

policies or endorsements, either expressed or im-
plied, of the Army Research Office, or the US

Government.
References

[1] M. Almgren, H. Debar, M. Dacier, A lightweight tool for

detecting web server attacks, in: Proceedings of the ISOC

Symposium on Network and Distributed Systems Security,

San Diego, CA, February 2000.

[2] M. Almgren, U. Lindqvist, Application-integrated data

collection for security monitoring, in: Proceedings of

Recent Advances in Intrusion Detection (RAID), Davis,

CA, October 2001, LNCS, Springer, 2001, pp. 22–36.

[3] Apache 2.0 Documentation, 2004. Available from: <http://

www.apache.org/>.

[4] P. Billingsley, Probability and Measure, third ed., Wiley-

Interscience, New York, 1995.

[5] CERT/CC, ‘‘Code Red Worm’’ Exploiting Buffer Overflow

In IIS Indexing Service DLL, Advisory CA-2001-19, July

2001.

[6] CGI Security Homepage, 2004. Available from: <http://

www.cgisecurity.com/>.

[7] K. Coar, D. Robinson, The WWW Common Gateway

Interface, Version 1.1. Internet Draft, June 1999.

[8] csSearch, 2004. Available from: <http://www.cgiscript.

net>.

[9] Cyberstrider Web Who. Available from: <http://www.web-

who. co.uk>.
[10] D.E. Denning, An intrusion detection model, IEEE

Transactions on Software Engineering 13 (2) (1987) 222–

232.

[11] R. Fielding et al., Hypertext Transfer Protocol—HTTP/

1.1. RFC 2616, June 1999.

[12] H. Feng, J. Giffin, Y. Huang, S. Jha, W. Lee, B. Miller,

Formalizing sensitivity in static analysis for intrusion

detection, in: Proceedings of the IEEE Symposium on

Security and Privacy, Oakland, CA, May 2004.

[13] S. Forrest, A sense of self for UNIX processes, in:

Proceedings of the IEEE Symposium on Security and

Privacy, Oakland, CA, May 1996, pp. 120–128.

[14] A.K. Ghosh, J. Wanken, F. Charron, Detecting anomalous

and unknown intrusions against programs, in: Proceedings

of the Annual Computer Security Application Conference

(ACSAC�98), Scottsdale, AZ, December 1998, pp. 259–

267.

[15] Anthony Hayter, Probability and Statistics for Engineers

and Scientists, second ed., Duxbury Press, Florence, KY,

2001.

[16] K. Ilgun, R.A. Kemmerer, P.A. Porras, State transition

analysis: a rule-based intrusion detection system, IEEE

Transactions on Software Engineering 21 (3) (1995) 181–

199.

[17] IMP Webmail Client. Available from: <http://www.

horde.org/imp/>.

[18] ISS, Realsecure. Available from: <http://www.iss.net/>.

[19] H.S. Javitz, A. Valdes, The SRI IDES statistical anomaly

detector, in: Proceedings of the IEEE Symposium on

Security and Privacy, Oakland, CA, May 1991.

[20] D. Klein, Defending against the wily surfer: Web-based

attacks and defenses, in: Proceedings of the USENIX

Workshop on Intrusion Detection and Network Monitor-

ing, Santa Clara, CA, April 1999.

[21] C. Ko, M. Ruschitzka, K. Levitt, Execution monitoring of

security-critical programs in distributed systems: a specifi-

cation-based approach, in: Proceedings of the IEEE

Symposium on Security and Privacy, Oakland, CA, May

1997, pp. 175–187.

[22] C. Kruegel, D. Mutz, W.K. Robertson, F. Valeur, Bayes-

ian event classification for intrusion detection, in: Proceed-

ings of the Annual Computer Security Applications

Conference (ACSAC 2003), Las Vegas, NV, December

2003.

[23] C. Kruegel, D. Mutz, F. Valeur, G. Vigna, On the

detection of anomalous system call arguments, in: Pro-

ceedings of the 8th European Symposium on Research in

Computer Security (ESORICS �03), Gjovik, Norway,

October 2003LNCS, Springer-Verlag, 2003, pp. 326–343.

[24] C. Kruegel, T. Toth, E. Kirda, Service specific anomaly

detection for network intrusion detection, in: Proceedings

of the Symposium on Applied Computing (SAC), March

2002, ACM Scientific Press, 2002.

[25] C. Kruegel, G. Vigna, Anomaly detection of Web-based

attacks, in: Proceedings of the 10th ACM Conference on

Computer and Communication Security (CCS�03), Wash-

http://www.apache.org/
http://www.apache.org/
http://www.cgisecurity.com/
http://www.cgisecurity.com/
http://www.cgiscript.net
http://www.cgiscript.net
http://www.webwho.co.uk
http://www.webwho.co.uk
http://www.horde.org/imp/
http://www.horde.org/imp/
http://www.iss.net/


C. Kruegel et al. / Computer Networks xxx (2005) xxx–xxx 21

ARTICLE IN PRESS
ington, DC, October 2003, ACM Press, New York, 2003,

pp. 251–261.

[26] T. Lane, C.E. Brodley, Temporal sequence learning and

data reduction for anomaly detection, in: Proceedings of

the ACM Conference on Computer and Communications

Security, San Francisco, CA, ACM Press, New York,

1998, pp. 150–158.

[27] W. Lee, S. Stolfo, A framework for constructing features

and models for intrusion detection systems, ACM Trans-

actions on Information and System Security 3 (4) (2000)

227–261.

[28] J. Liberty, D. Hurwitz, Programming ASP.NET, O�Reilly,

Sebastopol, CA, 2002.

[29] M. Liljenstam, D. Nicol, V. Berk, R. Gray, Simulating

realistic network worm traffic for worm warning system

design and testing, in: Proceedings of the ACM Workshop

on Rapid Malcode, Washington, DC, 2003, pp. 24–33.

[30] U. Lindqvist, P.A. Porras, Detecting computer and

network misuse with the production-based expert system

toolset (P-BEST), in: IEEE Symposium on Security and

Privacy, Oakland, CA, May 1999, pp. 146–161.

[31] M. Mahoney, P. Chan, Learning nonstationary models of

normal network traffic for detecting novel attacks, in:

Proceedings of the 8th International Conference on

Knowledge Discovery and Data Mining, Edmonton,

Alberta, Canada, 2002, pp. 376–385.

[32] Miva HtmlScript. Available from: <http://www.

htmlscript.com>.

[33] V. Paxson, Bro: a system for detecting network intruders in

real-time, in: Proceedings of the 7th USENIX Security

Symposium, San Antonio, TX, January 1998.

[34] Phorum: PHP Message Board. Available from: <http://

www.phorum.org>.

[35] PHP Advisory Homepage. Available from: <http://

www.phpadvisory.com/>.

[36] L. Portnoy, E. Eskin, S. Stolfo, Intrusion detection with

unlabeled data using clustering, in: Proceedings of ACM

CSS Workshop on Data Mining Applied to Security,

Philadelphia, PA, November 2001.

[37] M. Roesch, Snort—lightweight intrusion detection for

networks, in: Proceedings of the USENIX LISA �99
Conference, Seattle, WA, November 1999.

[38] Security Focus Homepage. Available from: <http://

www.securityfocus.com/>.

[39] R. Sekar, M. Bendre, P. Bollineni, D. Dhurjati, A fast

automaton-based method for detecting anomalous pro-

gram behaviors, in: Proceedings of the IEEE Symposium

on Security and Privacy, Oakland, CA, May 2001.

[40] G. Snedecor, W. Cochran, Statistical Methods, eighth ed.,

Iowa State University Press, 1998.

[41] A. Stolcke, S. Omohundro, Hidden Markov model induc-

tion by Bayesian model merging, in: Proceedings of

Advances in Neural Information Processing Systems, 1993.

[42] A. Stolcke, S. Omohundro, Inducing probabilistic gram-

mars by Bayesian model merging, in: International Con-

ference on Grammatical Inference, 1994.
[43] K.M.C. Tan, K.S. Killourhy, R.A. Maxion, Undermining

an anomaly-based intrusion detection system using com-

mon exploits, in: Proceedings of the 5th International

Symposium on Recent Advances in Intrusion Detection

(RAID), Zurich, Switzerland, October 2002, pp. 54–73.

[44] R. Tarjan, Depth-first search and linear graph algorithms,

SIAM Journal of Computing 1 (2) (1972) 10–20.

[45] G. Vigna, W. Robertson, V. Kher, R.A. Kemmerer, A

stateful intrusion detection system for world-wide Web

servers, in: Proceedings of the Annual Computer Security

Applications Conference (ACSAC 2003), Las Vegas, NV,

December 2003, pp. 34–43.

[46] D. Wagner, D. Dean, Intrusion detection via static

analysis, in: Proceedings of the IEEE Symposium on

Security and Privacy, Oakland, CA, May 2001, IEEE

Press, 2001.

[47] D. Wagner, P. Soto, Mimicry attacks on host-based

intrusion detection systems, in: Proceedings of the ACM

Conference on Computer and Communications Security,

Washington, DC, November 2002, pp. 255–264.

[48] C. Warrender, S. Forrest, B.A. Pearlmutter, Detecting

intrusions using system calls: alternative data models, in:

Proceedings of the IEEE Symposium on Security and

Privacy, Oakland, CA, 1999, pp. 133–145.

Christopher Kruegel is an Assistant

Professor with the Automation Sys-

tems Group at the Technical Univer-

sity Vienna. Before that, he was

working as a research post-doc for the

Reliable Software Group at the Uni-

versity of California, Santa Barbara.

He received his Ph.D. with honors in

computer science from the Technical

University Vienna while working as a

research assistant for the Distributed

Systems Group. His research interests include most aspects of
computer security, with an emphasis on network security,

intrusion detection and vulnerability analysis.

Giovanni Vigna is an Associate Pro-

fessor in the Department of Computer

Science at the University of California

in Santa Barbara. His current research

interests include intrusion detection,

security of mobile code systems, vul-

nerability analysis, and wireless sys-

tems. In particular, he worked on

developing frameworks for the modu-

lar development of both misuse-based

and anomaly-based intrusion detection

systems. Giovanni Vigna received his M.S. with honors and
Ph.D. from Politecnico di Milano, Italy, in 1994 and 1998,

respectively.

http://www.htmlscript.com
http://www.htmlscript.com
http://www.phorum.org
http://www.phorum.org
http://www.phpadvisory.com/
http://www.phpadvisory.com/
http://www.securityfocus.com/
http://www.securityfocus.com/


Networks xxx (2005) xxx–xxx

ARTICLE IN PRESS
William Robertson is a Ph.D. student

with the Reliable Software Group at
UC Santa Barbara. His research

interests include static analysis, vul-

nerability analysis, reverse engineering,

and system hardening.

22 C. Kruegel et al. / Computer


	A multi-model approach to the detection of web-based attacks
	Introduction
	Related work
	Data model
	Detection models
	Attribute length
	Learning
	Detection

	Attribute character distribution
	Learning
	Detection

	Structural inference
	Learning
	Detection

	Token finder
	Learning
	Detection

	Attribute presence or absence
	Learning
	Detection

	Attribute order
	Learning
	Detection

	Access frequency
	Learning
	Detection

	Inter-request time delay
	Learning
	Detection

	Invocation order
	Learning
	Detection


	Evaluation
	Model validation
	Detection effectiveness

	Conclusions
	Acknowledgements
	References


