
A View To A Kill: WebView Exploitation
Extended Abstract

Matthias Neugschwandtner
Secure Systems Lab

Vienna University of Technology
Email: mneug@iseclab.org

Martina Lindorfer
Secure Systems Lab

Vienna University of Technology
Email: mlindorfer@iseclab.org

Christian Platzer
Secure Systems Lab

Vienna University of Technology
Email: cplatzer@iseclab.org

Abstract—WebView is a technique to mingle web and native
applications for mobile devices. The fact that its main incentive
requires making data stored on, as well as the functionality of
mobile devices, directly accessible to active web content, is not
without consequences to security.

In this paper, we present a threat scenario that targets
WebView apps and show its practical applicability in a case study
of selected apps. We further show results of our examination of
over 287,000 apps in regard to WebView-related vulnerabilities.

I. INTRODUCTION

With the rise of Web 2.0 and its technologies, the web
shifted from static to dynamic content, enabling the advent
of social networks and peaking in the current state of web
apps that strive to rival their full-blown desktop counterparts.
Parallel to this development, another sector enjoys undimin-
ished growth: smartphones and their mobile device siblings,
i.e., tablets. Inevitably accompanied by these trends is the fact
that web content consumption shifts from desktop computers
to mobile devices.

On mobile devices, end-users expect functionality to be
delivered as a standalone app. In order to make the life for
developers easier, all major mobile platforms, such as Android,
iOS, Windows Phone and Blackberry introduced WebView.
WebView is essentially a browser-library that enables develop-
ers to deliver web content, or even a whole web application as
part of their smartphone client app. It is geared towards ease
of use: fetching and displaying web content is a matter of a
single method invocation. Using WebView, the developers do
not need to re-implement and maintain their web application
for every single platform. In addition, updates are distributed
instantaneously and without requiring any user interaction: the
developer just needs to change the content delivered by the
web server.

While a pure browser-based solution would feature the
same benefits, the main advantage of choosing WebView is
the streamlined integration of device functionality. By making
persistent storage, access to the short message service and
other functionality available to the web application, the result-
ing apps are both flexible like web applications and powerful
like ordinary applications. Typically, the developer exposes
the needed APIs via a JavaScript-interface that can then be
accessed from within web application JavaScript code.

The security implications of this feature are obvious: by
providing a direct bridge between web content and the operat-
ing system, WebView punches a hole in the browser sandbox
containment. If an attacker manages to serve malicious content

to a WebView-enabled app, she will have access to all APIs
that have been exposed via JavaScript.

Previous work in this area is scarce, Luo et al. [1] pick up
attack vectors on WebView (as does [2]), but do not delve
into the actual exploitation of apps. Bhavani [3] discusses
an orthogonal problem on how a malicious app may harm
a benign web page via WebView. Finally, Fahl et al. reveal
orthogonal security problems in Android’s SSL handling [4].

In this paper, we discuss two realistic threat scenarios that
target WebView. We continue by presenting case studies on
apps that we have successfully exploited. Based on the insights
of the case studies, we conducted an analysis of over 287k
Android apps to check for WebView-related vulnerabilities.

II. THREAT SCENARIO

A fundamental requirement for exploiting a WebView app
is to gain control over the web content that is requested by
the app. To access the exposed APIs, the attacker needs to
inject JavaScript code that is subsequently executed by the
app. Depending on time and location of the manipulation, we
can distinguish between two possibilities:

Server compromise. If the attacker manages to manipulate
the content stored on the server, the attack leverage is very
high, since every single installation of the targeted app will be
affected. The server compromise can be achieved by arbitrary
means, as long as parts of the web content can be manipulated
– a typical example being a stored cross-site scripting or
SQL injection attack (see Figure 1(a)). A great advantage of
this attack vector is that the attacker does not need to take
encryption into account, as the server will take care of it.

Traffic compromise. While compromising a tightly secured
server might prove difficult, manipulating the traffic on its way
can be an equally capable alternative. In a typical man-in-
the-middle (MITM) attack, the adversary injects the malicious
code in transmitted HTML or JavaScript (see Figure 1(b)).

With mobile devices, a typical MITM attack intercepts the
WiFi traffic. This can be achieved by setting up a roque WiFi
access point that lures victims into connecting to them blindly.
For example, the Jasager firmware of the WiFi pineapple [5]
will respond to any WiFi SSID scan request and impersonate
the requested network in the following.

Obviously, while the MITM attack works well with plain-
text, end-to-end encryption, such as HTTPS, is an issue. Since
our scenario does not include direct control over the device
or the app code itself, a MITM attack will only work if the



app does not check certificate origins. In this case, the attacker
can establish two encrypted channels, one to the web content
server and one to the app, using a self-signed certificate.

Once the means to inject JavaScript code has been estab-
lished, the actual exploit can be crafted. Its design depends on
both the targeted app and platform.

On Android, APIs can be exposed as a whole: after
an invocation of WebView.addJavascriptInterface
(<object>, <js_object_name>), the native Java ob-
ject will be available through JavaScript via the provided name.
The only information an attacker requires from the app in
this case is the JavaScript object name. Once determined, the
latter opens up vast possibilities: Via reflection the attacker
can create objects and invoke their methods as long as the app
has requested the corresponding Android permissions. An even
more drastic example would be to use Java’s HttpClient
to download a binary executable that then runs a root exploit
(e.g. rage against the cage [6]) to escalate its privileges and
circumvent the permission system altogether. Naturally, such
an attack would have to cope with different devices and
versions to be effective.

If an app is built using the Cordova [7] framework or its
predecessor, Phonegap, exploitation is even easier. Cordova is
a convenience layer that sits above WebView and provides
certain JavaScript interfaces, e.g. access to contacts or the
camera out of the box. In addition, it always registers a
JavaScript interface object called _cordovaNative that can
be leveraged as described above.

On iOS, the attacker’s possibilities are more limited, as
iOS’ WebView implementation does not include a ”native”
JavaScript bridge. Instead, most apps implement their own
bridging techniques. However, a generic Cordova exploit can,
for instance, always read the contact list by accessing Cor-
dova’s navigator.contacts object.

Generally, attacks that target frameworks such as Cordova
are both app- and platform independent as long as they stick
to the facilities supported by the framework and provided that
the app is granted the corresponding permissions.

III. CASE STUDY

For our case study we manually analyzed and exploited
four representative apps that use WebView. As a test setup we
had our mobile devices connect to our own WiFi hotspot that
rerouted all traffic through the mitmproxy [8].

Take Weather. This is a photo sharing app with the idea of
combining weather reports on certain geographical locations
with up-to-date pictures taken by the app’s users. It is built
based on Cordova and available for both Android and iOS.
The network communication consists of JSON encoded infor-
mation on the supported locations as well as the terms of use
in HTML format and a JavaScript that dynamically fetches
CSS style information. Since the traffic is transmitted unen-
crypted using plain HTTP, we can easily inject our malicious
JavaScript code. On both Android and iOS we were able to
access the address book, location information and the call log.
On Android we could also access other Java objects via the
reflection attack described above.

2 GET foo.html

1

3

4

Attacker

WebserverVictim

Malicious ScriptData Leak

</>

(a) Server compromise.

1 GET foo.html

2

4

Attacker

WebserverVictim

Data Leak

3 </>

(b) Traffic compromise.

Fig. 1. Example of an attacker compromising (a) the server or (b) the traffic
to steal a victim’s address book.

Most Wanted. This app displays information on the most
wanted criminals and terrorists of the United States. The re-
quested permissions include access to camera and geolocation
in order to be able to submit tips. WebView is used to directly
display HTML content fetched from http://mobileweb.cdc.
nicusa.com/most wanted web/. It adds a JavaScript interface
to allow HTML elements to change the displayed content via
a native Java object. Since the data is transmitted in plain
text, it is easy to inject malicious JavaScript embedded in a
<script> tag.

Nature Wallpaper. Who would expect harm from an app that
displays nature wallpapers, has excellent ratings and features
over 500,000 installs? The problem with Nature Wallpaper is
that it uses a JavaScript interface to set, download and manage
favorite wallpapers. Again, the traffic is unencrypted and
malicious JavaScript can thus be easily injected. Since the app
has the permission to access persistent storage, downloading
(and executing) further malicious content would be possible.

Jiepang. This Chinese location-based social networking app
offers a ”check in” service similar to Foursquare and has
excellent ratings as well as over 100,000 installs. In contrast
to the previous applications, the traffic is partially encrypted.
However, it overwrites the default WebView SSL error handler
and opens the door for attackers: Its custom implementation
of the onReceivedSslError does not perform any error
handling and simply calls handler.proceed(), thus ac-
cepting any certificate and loading a page without notifying the



user. This circumstance and the use of a JavaScript interface
exposes the app to the traffic compromise threat scenario
through a (MITM) attack even in spite of the use of HTTPS.
The app itself has the permissions to access persistent storage
and install packages, which again would allow downloading
and executing further malicious code.

IV. LARGE SCALE EVALUATION

Motivated by the results of our small case study, we
proceeded to the next level: To get a grip on how widespread
vulnerable WebView apps are, we examined 287,512 Android
apps that had been submitted to Anubis [9] from July 2012 to
March 2013.

TABLE I. WEBVIEW USAGE

Method call Samples Percentage of all samples
loadUrl 166,751 58%
setJavascriptEnabled 158,042 55%
addJavascriptInterface 87,079 30%

WebView usage. First, we statically analyzed how many sam-
ples of our dataset perform the necessary method invocations
to allow for exploitation (see Table I). Starting point is the
loadUrl call, which fetches web content from a given URL.
As a next step, setJavascriptEnabled has to be called
with the boolean value ”true” in order to enable execution
of JavaScript. To finally expose a native Java object via
JavaScript, addJavascriptInterface must be called.
While well above half of the apps in our dataset fetch web
content using WebView, still some remarkable 30% use a
Java to JavaScript bridge functionality in their app, making
it vulnerable to attacks.

TABLE II. UNENCRYPTED HTTP APP TRAFFIC

Traffic type Samples Percentage of samples with a JS interface
HTML 22,803 26.18%
JavaScript 11,870 14.63%
Total 23,048 26.47%

App traffic. In theory, WebView might be used to just render
web content that is stored on the device, thus making injection
of JavaScript code based on our threat scenario impossible.
Therefore we also analyzed the traffic transmitted during
dynamic analysis in Anubis. Table II shows the results on
unencrypted HTTP traffic. If either HTML or JavaScript or
both are contained in the traffic, it is highly likely that an
injection attack would be successful. Note that the given
numbers are a lower bound, as some apps might require
complex user interaction (such as a login) before they can
be used and transmit network traffic.

Since end-to-end encryption makes a MITM attack impos-
sible, we also had a look at apps that use a custom implemen-
tation of the onReceivedSslError handler. Developers
have to overwrite this method of the WebView client to accept
self-signed certificates and as we have seen in the case study
of Jiepang, custom implementations can be rather ”simple”.
Table III shows that a considerable amount of samples imple-
ments a custom WebView certificate handling. To assess their
complexity, we have disassembled every custom SSL handler.
The result is rather shocking: over 60% of the implementations

TABLE III. WEBVIEW CERTIFICATE HANDLING

Certificate handling Samples Percentage of all samples
Custom SSL handling 10,175 3.54%
Simple SSL handler 6,208 2.16%

are ”simple”: without executing any conditional statement, they
call handler.proceed right away.

Vulnerable apps. Based on the previous analysis results, we
define an app as being vulnerable, if it implements a JavaScript
bridge and either transmits data unencrypted or via an SSL
connection that will accept self-signed certificates. According
to this definition, 27,731 samples (i.e. nearly 10% of the
dataset) are vulnerable. However, not every vulnerable app
is equally worth to be exploited: the gain of a successful
exploitation is limited by what the app is allowed to do
according to its permission set. Table IV gives an overview
on how many security critical permissions are granted to
vulnerable apps. We have categorized the permissions into
multiple groups based on which risks are associated with them.

An impressive 76% of the vulnerable samples request
privacy critical permissions. Nearly 2,000 samples request
the SEND_SMS permission that could be abused to generate
revenue by sending messages to premium numbers. Finally
over 60% of the samples have the necessary permission to
store and run further malicious content.

TABLE IV. PERMISSIONS OF VULNERABLE APPS

Permission (group) Samples Percentage of vulnerable samples
RECEIVE SMS 1,375 4.96%
READ SMS 1,590 5.73%
WRITE SMS 933 3.36%
SEND SMS 1,981 7.14%
SMS permissions 3,124 11.27%
PROCESS OUTGOING CALLS 355 1.28%
CALL PRIVILEGED 134 0.48%
PHONE CALL 0 0%
Call permissions 382 1.38%
WRITE EXTERNAL STORAGE 16,711 60.26%
INSTALL PACKAGES 1,241 4.48%
Installation permissions 16,727 60.32%
READ PHONE STATE 18,935 68.28%
READ CONTACTS 3,304 11.91%
ACCESS FINE LOCATION 11,022 39.75%
ACCESS COARSE LOCATION 12,923 46.60%
Privacy permissions 21,197 76.44%

Libraries. By using third party libraries that employ WebView,
developers may unintentionally make their apps susceptible to
our threat scenario.

As we have already mentioned, frameworks such as Cor-
dova and its predecessor Phonegap add a JavaScript bridge
with a known object name per default. If an app uses unen-
crypted HTTP or self-signed certificates, it is thus immediately
vulnerable to a generic exploit written for the framework
it employs. In our dataset, 1,435 samples use Cordova and
3,881 use Phonegap. Among those, 1,111 samples (0.39%)
are vulnerable according to our definition.

But Cordova and Phonegap are not the only examples of
libraries that use WebView. Table V shows to which extent
third-party libraries are used by the samples in our dataset.
Most of the libraries are related to ad networks while some
(e.g. Flurry) collect statistics to generate revenue. We list the



top ten ad networks according to Appbrain [10] as well as the
Flurry Analytics library, Greystripe and Jumptap from [11].

To assess whether they are safe according to our threat
scenario, we have downloaded the current SDKs of all libraries
and inspected their class files. Since a JavaScript interface is
a precondition for the threat scenario on Android, we regard
all libraries that do not make use of a JavaScript bridge, safe.

While with app development frameworks such as Cordova
and Phonegap, the developer can still decide whether to use
encryption and which resources to fetch, ad libraries function
autonomously to a large extent. For example, Startapp receives
the URL of the ad to click on via a JSON object. This URL
is then directly used in a loadUrl call, which opens a
JavaScript enabled WebView. The latter features a JavaScript
interface named startappwall, whose corresponding Java
object is used to report back to the library when the displayed
ad is closed.

A full security audit would be necessary to evaluate
whether the listed ad libraries that use a JavaScript bridge are
truly safe. However, such an audit is out of the scope of this
paper.

TABLE V. LIBRARY USAGE

Library Samples Percentage of all samples Safe?
Cordova 1,435 0.50% -
Phonegap 3,381 1.35% -
Admob 70,987 24.69% X
AirPush 13,462 4.68% X
Flurry 9,838 3.42% X
Millennial Media 8,663 3.01% X
MobClix 7,285 2.53% ?
LeadBolt 6,195 2.16% ?
InMobi 3,924 1.37% ?
Greystripe 1,787 0.62% ?
Chartboost 1,052 0.37% X
Jumptap 482 0.17% ?
Startapp 81 0.03% ?

V. MITIGATION

Even if disabling JavaScript is not an option, a WebView-
based app can still be hardened against attacks.

The obvious way to thwart traffic tampering is a com-
plete end-to-end encryption. While many developers make
use of HTTPS to secure their connections, they are generally
reluctant to invest the money for a certificate issued by a
trusted authority. Instead, they usually overwrite the default
behavior of current WebView implementations and accept self-
signed certificates. Consequently, these applications are prone
to MITM attacks again if they do not employ countermeasures.

Such countermeasures could for example include origin
checks that will drop requests that do not match a certain IP
address or are not encoded using a predefined SSL certificate.
Simple checks are usually implemented by overwriting the
corresponding WebView handler methods [12].

On the operating system side, Android 4.2 has introduced a
new annotation @JavascriptInterface that needs to be
added to each method that is exposed via the JavaScript bridge.
This effectively prevents reflection-based attacks. However,
currently only 2.3% of all Android devices run version 4.2,
with most devices still operating on Gingerbread [13].

To limit the harm that can be done once an app is actually
exploited, the principle of least privilege should be followed,
i.e. in the case of Android, only necessary permissions should
be requested. Besides, Android WebView allows to separately
turn off access to local storage through the JavaScript bridge.

VI. CONCLUSION

In this short paper we have pointed out deficiencies in
real-world apps that use WebView and analyzed over 287,000
samples based on our threat scenario.

In a nutshell, the benefit of a better user-experience comes
at the cost of serious security implications. In case of a server
compromise of just a single, vulnerable app, the consequences
can be severe: seemingly harmless, simple apps like the Nature
Wallpaper in our case study can exceed 500,000 installs. The
resulting multiplication effect is enormous: by compromising
only one server, the attacker gains access to a huge number of
mobile devices.

Consequently, WebView’s JavaScript support should be
used with extreme caution. In order to keep app development
with WebView easy, developing a static code checking tool
for WebView related vulnerabilities could be rewarding future
work.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Union Seventh Framework Programme
under grant agreement n. 257007 (SysSec) and from the FFG –
Austrian Research Promotion under grant COMET K1.

REFERENCES

[1] T. Luo, H. Hao, W. Du, Y. Wang, and H. Yin, “Attacks on WebView
in the Android System,” in Proceedings of the 27th Annual Computer
Security Applications Conference (ACSAC), 2011.

[2] “Abusing WebView JavaScript Bridges,” http://50.56.33.56/blog/?p=
314, December 2012.

[3] A. Bhavani, “Cross-site Scripting Attacks on Android WebView,” In-
ternational Journal of Computer Science and Network, vol. 2, no. 2,
2013.

[4] S. Fahl, M. Harbach, T. Muders, L. Baumgärtner, B. Freisleben, and
M. Smith, “Why Eve and Mallory Love Android: An Analysis of
Android SSL (in)Security,” in Proceedings of the 2012 ACM Conference
on Computer and Communications Security (CCS), 2012.

[5] “WiFi Pineapple,” http://hakshop.myshopify.com/products/
wifi-pineapple, last accessed July 2013.

[6] “Rage against the cage,” http://thesnkchrmr.wordpress.com/2011/03/24/
rageagainstthecage/, March 2011.

[7] “Apache Cordova,” http://cordova.apache.org.
[8] “Man-in-the-middle proxy,” http://mitmproxy.org.
[9] “Anubis,” http://anubis.iseclab.org.

[10] “Android ad networks,” http://www.appbrain.com/stats/libraries/ad.
[11] S. Shekhar, M. Dietz, and D. S. Wallach, “AdSplit: Separating Smart-

phone Advertising from Applications,” in Proceedings of the 21st
USENIX Security Symposium, 2012.

[12] “Adventures with Android WebViews,” http://labs.mwrinfosecurity.
com/blog/2012/04/23/adventures-with-android-webviews/, April 2012.

[13] “Android Platform Distribution,” http://developer.android.com/about/
dashboards/index.html.


