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Abstract
Streaming movies online is quickly becoming the way in
which users access video entertainment. This has been
powered by the ubiquitous presence of the Internet and the
availability of a number of hardware platforms that make
access to movies convenient. Often, video-on-demand
services use a digital rights management system to prevent
the user from duplicating videos because much of the
economic model of video stream services relies on the
fact that the videos cannot easily be saved to permanent
storage and (illegally) shared with other customers. In this
paper, we introduce a general memory-based approach that
circumvents the protections deployed by popular video-on-
demand providers. We apply our approach to four different
examples of streaming services: Amazon Instant Video,
Hulu, Spotify, and Netflix and we demonstrate that, by
using our technique, it is possible to break DRM protection
in a semi-automated way.

1 Introduction
Digital Rights Management (DRM) is used by content

distributors to restrict the way in which content may be
used, transferred, and stored by users. This is done for sev-
eral reasons. To begin with, content creators try to prevent
content from reaching non-paying users through pirated
copies of the content. While estimates of the cost impact of
piracy are considered to be hugely inaccurate and research
on this issue is inconclusive [41], they vary from $446
million [14] to $250 billion [8] for the movie and music
industries in the US alone, and are far from insignificant in
other parts of the world [12, 27]. Consequently, DRM is
used to protect the media distributed through subscription-
based services. In these services, such as Netflix, Spotify,
Hulu, and Amazon Prime Instant Video, a user pays a re-
curring fee for access to a large database of media. This
media can be played as much and as often as the user
wishes, but becomes unavailable when a user stops paying
for the service. The need to protect content in this scenario
is obvious: if users can save the content for playback later

and simply cancel their account, the streaming service will
lose substantial amounts of money.

DRM protection of media, especially passive media such
as movies and music, has a fundamental difficulty. In or-
der to enable the viewing of content, such content must at
some point be decrypted. Different DRM schemes put this
decryption at various stages of the media playback pipeline.
Schemes such as High-bandwidth Digital Copy Protection
(HDCP) [9] attempt to put this decryption outside of the
reach of software and into the media playback hardware
itself. However, use of these schemes are not always feasi-
ble. Specifically, many mobile devices, virtual machines,
and lower-end computers do not support schemes such as
HDCP. To function on such devices, DRM schemes must
carry out decryption in software. On top of this limita-
tion, hardware DRM schemes suffer from a problem of
being too brittle against attacks. This was demonstrated,
in the case of HDCP, with the compromise of the HDCP
master keys [30], which rendered that DRM scheme use-
less. DRM schemes that do not rely on special hardware
support are much more flexible in recovering from such
compromises.

In order for an effective DRM scheme to be imple-
mented, the possible attacks that it could succumb to must
be well understood. In this paper, our goal is to examine
one such attack: the identification of the transition between
encrypted and decrypted data in the media player software.

To this end, we introduce MovieStealer, an approach
for the automatic defeating of DRM in media playing pro-
grams. This approach takes advantage of several central
intuitions. Our first intuition is that most data-processing
operations, and specifically decryption operations, are car-
ried out on buffers of data. This allows us to concentrate
our analysis on the flow of data between buffers, making
the analysis task considerably more tractable. Secondly,
we observe that all popular media services of which we are
aware utilize existing media codecs. We believe that this is
because coming up with new codecs is a very complicated
task, and many of the technologies behind efficient codecs
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are patented. Additionally, high-definition codecs are ex-
tremely performance-intensive, and many media player
devices rely on hardware support to decode them. This
reliance on hardware support makes changing these codecs
extremely difficult, making it far easier to license an ex-
isting codec than to create a new one. Utilizing this ob-
servation, we are able to identify buffers that contain data
similar to what we would expect to be present in popular
codecs. Our final observation is that we can distinguish
three distinct classes of data by carrying out a statistical
analysis: encrypted data (which will possess high random-
ness and high entropy), encoded media data (which will
possess low randomness and high entropy), and other data
(which will possess lower randomness and entropy).

We utilize these observations and develop an approach
that tracks the flow of data from buffer to buffer within
a program and identifies, using information theoretical
techniques, the point in the program at which the data
is decrypted. After automatically identifying this loca-
tion in the program, MovieStealer dumps the decrypted
stream. This stream can then be reconstructed into an un-
protected media file and played back in an unauthorized
media player.

Furthermore, we design optimizations that allow this
online approach to be carried out on a running media player.
Such optimizations are necessary due to the performance-
demanding nature of the services that we target.

We implemented this approach and evaluated it on sev-
eral streaming services, namely Netflix, Amazon Instant
Video, Hulu, and Spotify. The latter is a music streaming
service, while the others are video streaming services. All
of these services are real-time, high-performance products
which must be analyzed with low overhead in order to
function. In all cases, MovieStealer is able to successfully
pinpoint the decryption location and dump the decrypted
stream. After this point, we consider the DRM protec-
tion to be broken. We have also implemented media file
reconstructors to recover a playable media file.

To showcase our optimizations, we have also evaluated
our approach against GPG, an open-source cryptographic
suite.

The task of dumping the decrypted stream is completely
automated. MovieStealer dynamically analyzes a program
while it is used to play media, and dumps the decrypted
streams. However, the final step of reconstruction requires
a component to be developed for each protocol. We have
implemented three such components to cover our four
target streaming services. Since we consider the DRM
to be bypassed as soon as we recover the decrypted data,
automating this last step is out of the scope of our DRM
analysis.

MovieStealer was developed in order to gain insight
into the weaknesses of cryptographic DRM schemes. The
implementation and utilization of such an approach for

piracy purposes is, of course, illegal. Our intention is not
to aid illegal activity, and we present a discussion on ethics
and legality in Section 7.

In summary, we make the following contributions:

1. We present an approach capable of automatically identi-
fying and exploiting weaknesses in DRM scheme imple-
mentations by identifying cryptographic functionality
in real-time, with no offline analysis, and duplicating
the decrypted data.

2. To make such an approach work on performance-
demanding applications and to reduce the amount of
time the approach requires to locate the decrypted data,
we utilize a set of optimizations that would be useful
for any similar dynamic analysis approaches.

3. We show the effectiveness of this approach on four pop-
ular streaming services (Amazon Instant Video, Hulu,
Netflix, and Spotify) and a general-purpose encryption
tool (GPG).

4. To the best of our knowledge, we demonstrate the first
publicly-described approach to duplicate PlayReady-
protected content (such as modern versions of Netflix)
without the use of a screen scraper. While we have
been informed that there have been other attacks on
PlayReady, we have been unable to find any public
evidence of this fact.

5. Finally, we suggest several countermeasures that ven-
dors of content protection schemes could employ to
resist an attack such as MovieStealer. These range from
technical solutions, attacking the technical details of
our approach, to social solutions, such as increased use
of watermarking to make piracy more prosecutable.

2 Background and Related Work
Over the last several decades, there has been an arms

race between content owners, wishing to restrict the use
of their content, and content consumers, who wish to use
such content in an unrestricted way. New Digital Rights
Management techniques are created on a regular basis, and
new workarounds are quickly found to counter them. In
this section, we survey several popular DRM techniques to
better frame the research presented in this paper.

DRM schemes can generally be split into two classes:
non-cryptographic DRM schemes and cryptographic DRM
schemes. The former relies on verifying that the user is au-
thorized to use the protected content by somehow utilizing
a physical aspect of this content. Of course, this requires
that the content ships with something like a manual, disk,
or hardware dongle to use for verification. With the ad-
vent of digital distribution for software and multimedia,
non-cryptographic DRM schemes have fallen in popularity.

On the other hand, cryptographic DRM schemes work
by cryptographically verifying that the user attempting
to access the content is authorized to do so. This ap-
proach is usable for digital distribution of content, and
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is the paradigm according to which modern DRM schemes
are developed.

In this paper, we include link-protection schemes, such
as HDCP, which protect content in transit from being in-
tercepted, with true Digital Rights Management systems,
which ensure that only an authorized user is accessing
the content in question. From the viewpoint of removing
the protection, these two categories of content protection
schemes are quite similar, and our system is general enough
to handle both.

2.1 Cryptographic DRM Techniques
One of the early examples of cryptographic DRM tech-

niques was the DVD Content Scramble System [44]. CSS
is an encryption scheme to prevent DVDs from being
played on unauthorized devices. It functioned by assigning
a limited number of keys to manufacturers of DVD playing
devices. These keys would then be used to decrypt the key
chain of a given DVD and play back the video. CSS was
broken in 1999 through cryptanalysis by a group of secu-
rity researchers including Jon Lech Johansen (afterwards
known as DVD Jon) [48]. This was done by reverse engi-
neering a software DVD player to identify the encryption
algorithm.

CSS was a forerunner of the type of copy protection that
MovieStealer was created to analyze. While DRM schemes
have since evolved to be more flexible, the basic premise
remains the same: content is shipped in an encrypted form
(whether through physical media or as a download), and is
decrypted by an authorized player.

2.2 Hardware-based DRM
Hardware-based DRM has been around since the early

days of copy protection. Early examples of this class of
approaches are copy-protection dongles shipped with soft-
ware [49]. Software protected by such dongles does not
run without the presence of the dongle, and duplication of
the dongle is infeasible. While early dongles simply con-
tained static information that would be checked in software,
modern dongles are complex cryptographic co-processors
that actually carry out operations, such as decrypting the
program code, on behalf of the protected program.

A specific adaptation of this into the realm of multime-
dia is HDCP [9], a link protection scheme which moves
the decryption of media content outside of the computer.
In a perfect implementation of this scheme, all content
handled by the computer is always encrypted [11], and
the decryption occurs in the media playback hardware
(such as the monitor) itself. This would be problematic
for our approach, but is not a problem in practice for sev-
eral reasons. To begin with, all of our surveyed streaming
services allow playback without HDCP. This is necessary
because systems such as netbooks and virtual machines
lack support for HDCP, and these services attempt to re-

Encryption type
DRM Platform Connection File Stream

PlayReady No No Yes
RTMPE Yes No No
Spotify Yes Yes No

Table 1: The present encryption locations for our analyzed
platforms.

main compatible with them. Additionally, HDCP does not
integrate seamlessly with the encryption used in the media
streaming services of which we are aware. Encrypted con-
tent streamed from these services must first be decrypted,
usually in memory, before being re-encrypted with HDCP.
While some media devices exist that can handle this step
in dedicated hardware, thus disallowing any access to the
unencrypted stream, general purpose consumer devices are
not among them. This means that on such devices, even
in the presence of HDCP, MovieStealer can intercept the
protected content on such devices while it is unencrypted.
Finally, HDCP has been irrevocably broken with the leak of
the HDCP master key. Hardware-based DRM schemes like
HDCP are very hard to patch because they need to work
on many devices that are not easily upgradeable. While
the upgradeability of these devices might be improved in
the future, there is currently no clear solution to this issue.

2.3 Streaming DRM Platforms
We analyze three different DRM schemes used by four

platforms in this paper: Microsoft PlayReady (used by Net-
flix) [10], RTMPE (a link protection mechanism used by
Adobe’s Flash streaming platforms such as Amazon Instant
Video and Hulu) [3], and Spotify’s content protection [15].

We stress that our approach, as implemented by Movi-
eStealer, does not exploit any particular vulnerability inher-
ent to any single platform. Instead, these DRM schemes
are vulnerable due to their inherent design, and not the
inadequacies of any specific vendor or organization.

In this section, we provide some details about how these
schemes function, in order to better frame our approach.

2.3.1 PlayReady

Microsoft’s PlayReady DRM, as implemented in its
Silverlight streaming platform, which is used most promi-
nently by Netflix, is a cross-platform content protection
mechanism. PlayReady supports individualization, mean-
ing that the media is encrypted with a content key, which
is then encrypted with different keys for every user. Ev-
ery time a user streams content on Silverlight, PlayReady
provides an individualized license, ensuring that the con-
tent key can be decrypted and protected content viewed
only by the intended recipient. The process to play back
PlayReady-protected media using Silverlight comprises
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several steps. To improve understanding, we present a
high-level overview of these steps.

Metadata. To initialize playback, the Silverlight client
requests metadata from the media server provider (such as
Netflix). This metadata is a file that contains available res-
olutions and bit rates for the content, whether the payload
is encrypted or not, the domain name of the license server,
and the expiration time of the request.

License. If the metadata specifies that the payload is en-
crypted, the Silverlight client must acquire the license (con-
taining the decryption key) from the license server, which
is specified in the metadata. When a client sends the license
request to the license server, the license server responds
with the Individualized Black Box (IBX). The IBX is a cus-
tom, easily-upgradeable, and highly-obfuscated DLL that
can be customized by individual content providers. Using
the IBX, the client generates an individualized request to
the license server.

The license server verifies this request and responds with
a license. The client uses the IBX to decrypt the license
and extract the content key, which is a 128-bit AES key.

Data. Having acquired the license, the client can now
play back the protected content. This content takes the
form of a fragmented MPEG-4 file transferred from the
service provider. The protection works by encrypting the
media stream data, while leaving the headers and stream
metadata unencrypted. The data is encrypted using AES
and is decrypted using the key acquired from the license
server.

Performance. PlayReady has several performance re-
quirements. To begin with, as with any network service,
the client must be able to communicate with the server
without letting the connection time out. Additionally, as a
security measure against piracy, the IBX and correspond-
ing license request have an expiration time, and the license
will stop working after this timeout has elapsed. Finally,
the media player (Netflix) itself has a minimum perfor-
mance threshold, below which it will stop processing the
stream and display an error. A successful online analy-
sis of a PlayReady-protected media player must have a
low-enough overhead to allow the player to meet these
performance obligations.

2.3.2 RTMPE

RTMPE is a lightweight link protection mechanism de-
veloped by Adobe on top of the Real Time Messaging
Protocol (RTMP) [2]. The addition to RTMP is a simple
encryption layer.

Encryption layer. RTMPE generates a stream key us-
ing a Diffie-Hellman [29] key exchange. Once this key is
agreed upon, the entire communication stream is encrypted
using RC4 [1]. No extra encryption is done on the media
itself.

Performance. Any online analyzer running against

RTMPE must be fast enough to allow the processing of the
data stream without dropping the connection.

2.3.3 Spotify
Spotify implements a custom protection scheme to pre-

vent duplication of their content. This scheme was reverse-
engineered by the Despotify Project in their attempt to cre-
ate an interoperable client [5]. The scheme uses a stream
cipher to protect its communication, and, in addition, it
encrypts each individual song.

Stream cipher. The Spotify client performs a key ex-
change with the server to create a key to be used for the
remainder of the session. After the key is generated, the
session is encrypted using a Shannon stream cipher [42].

Song encryption. Individual music files sent by Spotify
in the encrypted stream are themselves encrypted with AES.
The keys to this encryption are sent in the stream along
with the music files. Upon receipt of a music file and its
corresponding key, the Spotify client decrypts the file for
playback. For offline playback, Spotify can cache this data.

Performance. An online analysis of Spotify must be
fast enough to process the data stream without dropping
the connection. Additionally, if the Spotify client runs too
slow, it will mistakenly perceive that the connection to the
server has been lost.

2.4 Bypassing DRM
As noted above, DRM methods tend to have unique

workarounds, depending on their specific characteristics.
For non-interactive multimedia, one general approach is
called the Analog Hole [47]. The Analog Hole is a “flaw”
in any DRM scheme, which is due to the fact that any
media must eventually be consumed by a human. For
example, a video will eventually have to be displayed on a
screen and seen by someone’s eyes. In the simplest setting,
a human could just record the protected music or movie
with a microphone or a camcorder. Programs [4] exist that
will even record a movie as it is playing on the screen by
scraping the screen’s pixels.

However, since all the streaming media platforms known
to us use lossy encoding for space and bandwidth-saving
reasons, this type of DRM bypassing has the downside
of a loss of quality due to the necessity to re-encode the
captured audio and video. The only way to duplicate such
content without quality loss is to capture the decrypted
content after decryption but before decoding. There are
two ways to do this: recovery of the keys used in the cryp-
tographic process and the interception of the decrypted
content. The former method requires approaches that may
vary widely based on the DRM scheme and the type of
encryption and key management used. Additionally, white-
box cryptography [24] could be used to greatly complicate
such an implementation by obscuring the usage of the cryp-
tographic keys. The latter approach, which MovieStealer
uses, allows us to intercept decrypted content irrespective
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of the underlying encryption protocols. By doing this, it is
possible to recover the original high-quality media sent by
the media originator in a general way.

2.5 Cryptographic Function Identification
Since the identification of cryptographic functions is

relevant to many other fields of study, and particularly
relevant to malware analysis, other works have looked into
identifying cryptographic routines.

An early approach to detecting decryption in memory is
detailed by Noe Lutz [39]. This approach slows down the
instrumented program by a factor of 2,400, an unaccept-
able slowdown for a high-performance media streaming
application. Additionally, this approach detects encrypted
data by measuring entropy. Such a detection would be
unable to distinguish between encrypted and compressed
(or, in our case, encoded) data.

Another approach, ReFormat [46], functions by detect-
ing the flow of input data from a decryption routine to a
handling routine followed by a flow of output data to an
encryption routine. This approach does not work for our
application domain for two reasons. Depending on the
protocol, an analyzed media player might not necessarily
encrypt a response. For example, the actual communica-
tion protocol of Microsoft’s Silverlight streaming platform
is not encrypted. As such, the client only decrypts the
encrypted stream data, but does not have to encrypt any
responses. Furthermore, ReFormat detects the transition
from encrypted to decrypted data based on the percentage
of arithmetic and bitwise functions processing it. However,
since the decrypted stream in a media player is passed on
to the decoding step, this heuristic does not necessarily
hold true.

Dispatcher [20] is an approach that analyzes the data
flow of bots to determine their communication protocol. To
find the decrypted data, the system uses a similar method
to ReFormat. Dispatcher also functions through offline
analysis, and would be unsuitable for our application.

Another interesting approach is presented by Caballero,
et al [21]. This approach is geared toward removing the
decryption and decoding functionality in a malware pro-
gram to easier interact with it (in the paper, the authors
interacted with the malware to find bugs). This is not appli-
cable to our case, since we gain no benefit from interacting
with a media player directly. In any case, the overhead in
this approach likely makes it unfeasible for use on large
programs such as media players, although we are unable
to verify this as the authors did not publish the tool itself.

BCR [19] is a tool that implements an algorithm,
similar to MovieStealer’s buffer detection, for detecting
cryptographically-relevant loops and buffers. However,
this approach has very heavy overhead, requires several
similar executions, and relies heavily on offline analy-
sis, which makes it ineffective for our target applications.

Aside from the performance issue, this is also due to the
fact that streaming media players are not completely de-
terministic because of changes in behavior due to network
latency, user interaction, and other factors. These factors
are often hard or impossible to control between execu-
tions, especially with complicated DRM platforms such as
PlayReady. Additionally, by avoiding this requirement in
MovieStealer, we are able to simplify our approach by not
worrying about buffers being relocated by ASLR.

The approach described by Grobert, et al [32] also de-
tects cryptographic primitives, but is another offline analy-
sis and would not be performant enough for a media player.
Additionally, this approach, along with other similar ap-
proaches that check for cryptographic primitives, would be
sensitive to white-box obfuscation.

Finally, a recent result in this area of research is
Aligot [22]. Aligot works by identifying loops in programs,
identifying data flow between such loops, and comparing
the result against reference implementations of crypto-
graphic primitives. However, it also functions in an offline
manner and (considering the amount of time its offline
phase requires) would be too slow for a media player to
function. Additionally, Aligot requires that the program
being analyzed utilize a standard implementation of cryp-
tographic primitives, while our approach avoids such an
assumption.

These existing approaches are not adequate for breaking
DRM in media players. Since the media services that we
analyze have real-time requirements, any approach must
have minimal overhead to function. However, these ap-
proaches were mostly designed to be run against small,
non-demanding malicious programs. In general, they have
high overhead and rely on offline analysis while Movi-
eStealer is designed to be a fast, online approach. Fur-
thermore, these approaches do not address the distinction
between encrypted and encoded/compressed data with the
regards to randomness as opposed to entropy, which is
necessary to locate the appropriate buffer from which to
extract the decrypted-but-encoded media stream.

3 Approach
Our intuition is that the authors of a media player would

reuse existing, proven codecs for ease of deployment, per-
formance, and reliability. Thus, at some point during the
processing, one should see the data decrypted and sent to
the media codec for decoding. By examining the data as it
flows through the authorized media player, one can detect
the point at which the player transforms the data from an
encrypted stream to an encoded stream. Once this location
in the program is detected, the decrypted stream can be
dumped and reconstructed. Our approach leverages this
observation and provides an automatic mechanism to break
the DRM schemes of several popular streaming services.

The process of copying protected content can be divided
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into three separate phases:

1. Analyze the way in which the authorized media player
handles the encrypted stream and identify the point at
which the stream is decrypted.

2. Dump this decrypted stream.
3. Reconstruct the original media file from the decrypted

stream.

Normally, the first step would have to be done once per
media player (or, depending on the DRM implementation,
once per media codec), while the second and third steps
would be repeated for each dumped movie.

Given an authorized media player executable, Movi-
eStealer will execute the binary, trace its execution flow,
monitor and log its data access, recover loops and buffers
(defined as consecutive bytes of data), recognize the de-
cryption step, dump the decrypted data, and construct a
media file with the unprotected content.

3.1 Stream Decryption Analysis
The first step in the copying of protected content is the

analysis of the authorized media player’s processing of the
encrypted stream. Of course, much of the code dealing
with Digital Rights Management is heavily obfuscated,
packed, or protected, and so our approach must be able to
work with countermeasures such as dynamically generated
functions. Therefore, the stream decryption detection is
based on the dynamic analysis of the player application.

A media player processes a substantial amount of data
in the course of downloading, decrypting, decoding, and
playing media. Intuitively, such data, whether encrypted or
decrypted, is stored in buffers in memory. While this data
could conceivably be stored in evasive schemes (for exam-
ple, splitting up buffers so that no two bytes are adjacent),
we have not observed such evasiveness in the real-world
applications that we have analyzed. Moreover, this would
complicate the development process and would impede
performance.

Thus, our goal in this step is to identify the location in
the program where an encrypted buffer is turned into a
decrypted buffer.

3.1.1 Loop Detection
The intuitive way to access data buffers is through a loop

(or a loop-equivalent CPU instruction). As data decryption
involves accessing the encrypted buffers, we would expect
(and, indeed, this is what we have observed) it to be done
using loops. Our intuition here is that a loop will exist
that carries out a decryption operation on a small chunk of
data. This loop (or, more precisely, its output) is what we
are looking for. Hence, the first step of our solution is to
automatically identify loops in the program.

Subsequent parts of our analysis work on loops rather
than either functions or individual instructions for several
reasons. First, loops are more likely to access a small

mov eax, 0
.head:

mov ebx, (0x1000, eax, 4)
mov (0x2000, eax, 4), ebx
inc eax
cmp eax, 5
jne .head

Table 2: An example of a loop.

mov eax, 0xBAADF00D
xor dword ptr [esp], eax

Table 3: An example of an implicit read by a loop.

number of buffers for a single purpose, while functions
might access many buffers for several purposes. Secondly,
a single instruction might only carry out a partial operation
on the buffer. For example, a loop might carry out an entire
decryption step while a single instruction in the loop might
simply XOR two words together. Thus, by performing
our analysis at the loop level, we can better see individual
actions that a program carries out on its buffers. Thirdly,
identifying functions within a program, without symbol
tables and in the presence of obfuscation, is a complicated
and error-prone task. We bypass this problem by operating
on loops, which are more straightforward to identify. A
loop can usually be identified as long as its basic blocks
are executed at least twice.

Although we perform our analysis on loops, our ap-
proach is inspired by some basic concepts taken from func-
tion analysis. A good example is the input and output of
a loop. We mark all data that a given loop reads as its
input, and all data that it writes as its output. Table 2 gives
an example of a loop that reads 5 dwords from the buffer
starting at 0x1000 as input and writes them to the buffer at
0x2000 as output.

It is important to note that, in the x86 architecture, data
can be an input to a loop without being explicitly read by
that loop. For example, Table 3 demonstrates such a case,
where esp, despite not being explicitly read by the code in
question, is an input to the XOR operation.

Our approach assumes that the decryption process hap-
pens inside a loop. More specifically, we expect to find a
loop in the authorized media player that has at least one en-
crypted buffer as an input and at least one decrypted buffer
as an output. We expect this decryption to be done in a loop
because such DRM schemes on media must process large
volumes of data, and the most efficient way of processing
such data is through a loop or loop-like instruction.

Detecting the loops. Our approach to detecting loops
is mainly inspired by LoopProf [40]. LoopProf maintains
a Basic Block Stack (BBLStack) per thread. A BBLStack
is a stack of basic block addresses. Whenever a basic block
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is executed, its start address is pushed to this stack, and
when the basic block exits, the start address is popped.

Our analysis routine is called every time a Basic Block
(BBL) is executed. The analysis routine attempts to find
the same BBL by tracing back in the BBLStack. If the
same BBL is found in the BBLStack, the basic blocks
between this BBL and the top of the stack are considered
to be a loop.

Note that when using this approach, some additional
care must be taken to avoid misdetection of recursive calls
as loops.

Although the basic idea of loop detection is simple,
much attention was given to performance. We explain our
optimizations in detail in Section 4.2.

Maintaining a call stack. As described in LoopProf,
loop detection by BBLStack can cause our program to
identify loops that occur across function boundaries, which
is often the case with recursive function calls. While this
would not break our approach, we have chosen to detect
and remove these loops to improve the performance of
the analysis, given that we have not seen any example of
decryption being done in a recursive fashion.

Using our call stack, we only check BBL inside the
current frame when searching for loops. We maintain this
call stack for every thread by instrumenting every call and
return instruction. Of course, functions do not have to use
these instructions, in which case one would still detect the
blocks as a loop. In the cases we have examined cases, this
is acceptable for our approach.

Apart from aiding in loop detection, the presence of
a call stack allows us to identify loops that are used for
multiple purposes. For example, one loop could be used
both to encrypt and to decrypt buffers. In this case, if the
loop is called by one function, it behaves like a decryption
routine, and has a random input as well as a non-random
output. However, when called by a different function,
the loop might behave like an encryption routine, and
would throw off our detection if we did not differentiate
between these two cases. Table 4 illustrates this scenario.
Differentiating between these two scenarios is important
for our analysis, since we analyze all of the data read and
written by each loop in aggregate across several runs. Thus,
we must differentiate between the two execution paths of
this loop in order to distinguish the two different cases.
Therefore, a loop is identified not only by its basic blocks,
but also by the top several functions on the call stack at the
time it was called.

Detecting unrolled loops. Loops are frequently un-
rolled for increased performance. Specifically, the first or
last few iterations are often unrolled, with the rolled loop
present in case more data needs to be processed. In order
to detect unrolled loops, we take note of the basic blocks
that were executed between any two loops. We later check
if these basic blocks do operations on the same buffer as

void crypto_loop(void *key, void *in,
void *out, int len);

void encrypt() {
crypto_loop("key", decrypted,

encrypted, len);
}

void decrypt() {
crypto_loop("key", encrypted,

decrypted, len);
}

Table 4: An example of both the encryption and decryption
being done in one loop.

either of the two loops.

3.1.2 Buffer Identification
According to prior work in the field of data reverse-

engineering, most buffers are accessed in loops [43]. Thus,
having identified loops, we must then identify the buffers
on which they operate. For the sake of performance, and
unlike the approaches outlined in Howard [43] and RE-
WARDS [37], which track the base pointers of and offsets
into buffers by instrumenting every instruction, our ap-
proach is based on recording and analyzing reading and
writing operations inside a loop. This is similar to what is
implemented in BCR [19]. In addition, several heuristic
methods are applied to improve the detection of the buffers.
By applying these heuristics, even complex buffers such as
the key permutation array used in RC4, which is accessed
neither consecutively nor completely in most cases, can be
identified by our approach.

Fetching memory access patterns. When Movi-
eStealer is analyzing a loop, it dynamically instruments
each read and write within that loop. For each such read
and write, we record the target memory location that it ac-
cesses, the instruction pointer where the access occurs, and
the size of the read or write. Note that some instructions,
when called with specific operands, execute both a read
and a write operation.

Whenever control flow leaves the loop, we move on to
analyzing the loop’s memory access patterns.

Analyzing memory access patterns. A loop can ac-
cess a buffer in one of several different access patterns.
Our approach focuses on detecting the following ones:

1. Consecutively accessing the buffer byte-by-byte.
2. Consecutively accessing the buffer dword-by-dword.
3. Consecutively accessing the buffer at single-byte offsets

and reading a dword at a time.
4. Consecutively accessing the buffer using multimedia

CPU extensions, such as SSE instructions [45].
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Address Step 1 Step 2 Step 3
0x1000 O (size 4) C (element C (element
0x1004 O (size 4) size 4) size 4)
0x1008 O (size 4) C (element C (element
0x100c O (size 4) size 4) size 4)
0x1010 O (size 4) O (size 4)
0x1010 O (size 8) O (size 8) C (element
0x1014 size 8

Table 5: An example of the creation of composite buffers
(C) from the memory read operations (original buffers O)
of the code in Table 2.

5. Accessing the buffer in a predictable pattern. For exam-
ple, two first bytes out of every three consecutive bytes
are read in a buffer.

6. Accessing the buffer in an unpredictable pattern. In
most such cases, the buffer is not fully accessed during
the execution of a loop. For instance, accessing the key
permutation array of the RC4 [1] algorithm.

To identify a read or write buffer, we perform our analy-
sis in several steps. First, we classify each memory region
affected by an individual memory access as an original
buffer and sort them by their starting memory addresses.
Then, we merge these buffers into composite buffers by
recursively applying the following steps until there are no
more candidates for merging. As we merge the buffers,
we attempt to determine the size of the elements in each
buffer.

• Two original buffers are merged if they are adjacent and
are of equal size. In this case, the element size for the
resulting composite buffer is set to the size of the two
original buffers.

• Two original buffers are merged if they overlap, are of
equal size, and their size is divisible by the size of the
overlapping portion. In this case, the element size for
the resulting compound buffer is set to the size of the
overlapping region between the two original buffers.

• An original buffer is merged with a composite buffer if
they are adjacent and the element size of the composite
buffer is equal to the size of the original buffer.

This is applied recursively until there are no more origi-
nal buffers that can be merged. At this point, any remaining
original buffers are reclassified as compound buffers with
an element size equal to their length. An example of this
is detailed in Table 5.

This step merges the individual memory accesses into a
preliminary representation of buffers. The sizes of these
composite buffers will vary, but will be divisible by their
element size. This representation is finalized in the next
step, where the composite buffers are merged.

Merging composite buffers. Due to the way in which
some buffers are accessed, they will be split into several

composite buffers in the previous step. One example of
this is the key permutation array used in RC4 [1]. This
buffer usually has a size of 256 bytes, and is not likely to
be completely read or written if there are less than 100
bytes to be decrypted. One approach is to aggregate the
memory accesses over several different calls to the function
to identify the buffer, but that brings up questions of when
to terminate such an analysis. Therefore we use a simple
heuristic to better identify such buffers: Given two existing
composite buffers C and D, where buffer C starts at addrc
and has a size of sizec, while buffer D starts at addrd and
has a size of sized , and addrd > addrc. We define the
term gap ratio as the size of gap between buffers C and D
divided by the sum of sizes of buffers C and D:

gratio(C,D) =
addrd− (addrc + sizec)

sizec + sized

We then perform the following algorithm:

1. If C and D have the same element size, and they are
adjacent, they will be merged into a larger buffer.

2. If C and D are not adjacent, and they have the same
element size, they will be merged if the gap ratio is less
than 0.2. We determined this number experimentally.
Of course, setting this threshold to a value too large will
create false positives in the buffer detection (and will
add noise to our subsequent statistical testing), while
leaving it too small will cause us to miss parts of the
buffers.

This algorithm is applied on the set of composite buffers
until no more buffers can be merged.

Tracking unrolled loops. After the composite buffers
are merged, we add any memory accesses done by blocks
that are adjacent to the buffers and are identical to the
blocks inside a loop. This allows us to catch the marginal
parts of buffers that are modified by unrolled loops.

Data paths. After this step, we will have obtained a
full list of buffers that are accessed inside each loop. We
define a data path as an input-output buffer pair within a
loop. A loop could have multiple data paths, as shown in
Table 6. In the absence of detailed data-flow analysis, we
conclude that every input buffer and every output buffer in
a loop make a data path. Thus, in a loop with N input and
M output buffers, we will have N×M data paths.

3.1.3 Decryption Detection

After identifying the buffers and the paths between them,
the next step is to identify the buffer that holds the de-
crypted content. While a full analysis of every data path
in a real-world application could be unfeasible due to the
complexity of modern media players, we can utilize several
heuristics to identify the data path that contains the decryp-
tion of the protected content. First of all, the data path that
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mov eax, 0
.head:

inc eax
mov ebx, (0x1000, eax, 4)
mov (0x2000, eax, 4), ebx
mov ebx, (0x3000, eax, 4)
mov (0x4000, eax, 4), ebx
cmp eax, 10
jne .head

Table 6: An example of a loop with four data paths: 0x1000
to 0x2000, 0x1000 to 0x4000, 0x3000 to 0x2000, and
0x3000 to 0x4000.

Input Output
Stage E R E R
Download high high high high
Decrypt high high high low
Decode high low low low

Table 7: The entropy (E) and randomness (R) of data paths
when playing a protected media file.

we are looking for should have a similar throughput to the
size of the media file. Additionally, since we are looking
for a data path that has an encrypted input and a decrypted
(but encoded with a media codec) output, we can utilize
information theoretical properties of the buffers to improve
our analysis.

We perform this step on the aggregated input and the
aggregated output buffers of each data path. That is, we
append all of the input and all of the output of a given data
path across multiple executions of the loop in question,
resulting in an overall input buffer and an overall output
buffer. This allows us, for example, to analyze all of
the output of a given operation across the runtime of the
program. In the case of a decryption function, this will
allow us to collect all of the decrypted content.

Entropy test. The data path in which we are interested
will have an encrypted input buffer and a decrypted but
encoded output buffer. The input buffer, being encrypted,
will have very high entropy. The output buffer, being
encoded (and effectively compressed), will also have very
high entropy. We use this property to further filter out
unrelated data paths.

This also helps filter out the decoding step. Media
codecs are highly compressive functions, resulting in high-
entropy buffers. On the contrary, a buffer of, for example,
YUV color frames is likely to have a comparatively low
entropy.

Randomness test. A fundamental property of en-
crypted data is that it is indistinguishable from random
data. This is called ciphertext indistinguishability, and is a
basic requirement for a secure cryptosystem [31]. Further-

more, randomness is very difficult to achieve, and is not
a feature of data encoding algorithms. Such algorithms,
which are essentially specialized compression algorithms,
produce data with high entropy but low randomness. Thus,
as shown in Table 7, we can distinguish between the en-
crypted and decrypted stream by using a randomness test.

The Chi-Square randomness test is one such test, de-
signed to determine if a given input is random. Often used
to test the randomness of psuedo-random number genera-
tors, we use it to determine whether or not the content of a
buffer is encrypted. The implementation details of the Chi-
Square randomness test is detailed by Donald Knuth [33]
and its application to randomness testing is presented by
L’Ecuyer, et al [36]. Our approach does not rely on the im-
plementation details of the randomness test, and we have
omitted them in the interest of space. Furthermore, the
Chi-Square randomness test is not the only one that can
be used; any measure of randomness of a buffer can be
utilized for this purpose.

One important consideration is the amount of data that
we should collect before performing our randomness test.
A commonly accepted rule for the Chi-Square randomness
test, mentioned by Knuth [33], is that given n, the number
of observations, and ps, the probability that n is observed
to be in category s, the expected value n× ps is greater
than 5 for all categories s. We consider the contents of
each buffer one byte at a time, giving us 256 categories of s.
According to calculations presented by Knuth, we would
need to collect 320 kilobytes of data for a reliable test. In
fact, we carried out an empirical analysis of the minimum
amount of data that needed to be analyzed to be confident
of avoiding misdetection. The analysis determined that
a safe threshold to avoid misclassifying random data as
non-random is 800 kilobytes, and a safe threshold to avoid
misclassifying non-random media data as random is 3800
bytes, both of which are easily feasible for any sort of
media playback.

We have observed that the Chi-Square randomness test
returns extremely low values (very close to 1.0) for en-
crypted data, and very high values (in the thousands) for
encoded data.

3.2 Dumping the Stream
After the previous steps, we are able to identify the

specific data path that has the encrypted input and the
decrypted, but decoded, output. Then, our system instru-
ments the authorized media player and dumps the output
buffer.

3.3 Reconstructing the File
Finally, with the decrypted data available, the last step is

to reconstruct the media file. In the trivial case, the DRM
scheme works by encrypting the entire media file whole-
sale. This is simple to recover because the decrypted buffer
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that we dump will then contain the whole, unprotected file.
However, this is not the case in general. For example, the
approach used in Microsoft’s PlayReady DRM encrypts
just the media stream, leaving the headers and metadata
decrypted. Thus, the decrypted stream will contain the raw
media stream, which cannot be directly played by a media
player. In the general case, this is a problem of program
analysis and writing an automated tool to reconstruct the
file given an unknown protocol is quite complicated.

In order to recreate the media file in these circumstances,
knowledge of the streaming/DRM protocol is required.
For example, knowing that PlayReady encrypts the media
stream, we wrote a reconstruction plugin to reconstruct
the file with the newly decrypted media stream (and the
already decrypted headers and metadata) so that it would
be playable in conventional media players.

Depending on the protocol and the expertise of the oper-
ator, this stage can involve reading documentation, reverse
engineering, and file analysis. However, at this point the
automated decryption of the content, which is the central
aim of our paper, is already completed. While the media
content will need to be reconstructed for every dumped file,
the development process is only required once per DRM
platform (or, depending on the implementation, once per
DRM platform/media codec combination).

4 Implementation

We implemented our system using the PIN [38] Dy-
namic Binary Instrumentation framework. We chose this
tool for its ease of development, but our approach can
be implemented on top of a full-system emulator such as
QEMU in order to avoid anti-DBI techniques by the media-
playing applications. However, the use of QEMU would
raise the question of performance, since it is not clear if
QEMU’s dynamic recompilation of binaries can match the
performance of PIN. Additionally, though our system is
implemented under the x86 architecture, the approach is
easily translatable to other architectures as well.

We will detail some of the specific implementation de-
tails related to the individual DRM platforms that we ana-
lyzed. Additionally, in the course of implementing our ap-
proach, we made several implementation decisions, which
we will discuss hereinafter. After describing these, we will
also detail optimizations that we used to increase the speed
of our approach.

4.1 DRM Platforms

We specifically investigated three DRM platforms: Flash
video with Amazon Instant Video and Hulu, Microsoft
PlayReady with Netflix, and Spotify. Here we will give an
overview of the protocols and the tools we developed to
support them.

4.1.1 Flash RTMPE
Amazon Instant Video and Hulu both use the RTMPE

protocol, developed by Adobe, to transmit video. RTMPE
works by encrypting the whole media file on the fly before
sending it across the network.

Since the entire file is encrypted, reconstructing it did
not present a challenge because it was decrypted in a con-
tinuous manner in one function.

4.1.2 Microsoft PlayReady
Netflix uses Microsoft’s Silverlight PlayReady DRM to

protect its content. PlayReady presents several challenges.
Relocating code. In Silverlight, the actual routine used

for decrypting AAC audio, WMV video and H.264 video
is frequently relocated inside the process’ memory space.
We assume that this is done to frustrate would-be pirates.
An additional benefit, given the required flexibility of the
surrounding code, would be the ability to dynamically
update the decryption routine over the network. However,
we did not observe the latter ever occurring. Ironically,
this evasive behavior gives us a clear signal that such code
is interesting, and could enable us to prioritize it in our
analysis.

To cover the case of relocated code, we identify such
loops based on the non-relocating portions of their call
stack and the hash of their basic blocks. This allows us to
handle relocating code automatically as part of the normal
analysis.

Disabling adaptive streaming. Netflix automatically
adjusts the quality of the video stream to compensate for
bandwidth and CPU inadequacies. This can result in a
varied quality in the generated media file, which would lead
to a confusing subsequent media consumption experience.
Furthermore, because the MovieStealer implementation is
extremely CPU-intensive, such adaptive streaming features
will invariably select the stream with the worst available
quality.

Our solution to this problem, specifically for Silverlight-
based streaming services, is to use a Winsock introspection
tool named Esperanza [7] to inspect the browser’s traffic
and filter the lower-bandwidth stream options out of the
metadata. While this is a protocol-specific fix, a general-
ized version of this would be outside of the scope of this
paper.

Partial encryption. PlayReady is hard to work with
because it only encrypts the raw stream data of its media
files. Header information and meta-data is not encrypted.
Because of this, the decrypted file must be pieced back to-
gether by combining the original metadata and the dumped
stream. Furthermore, some of the headers have to be modi-
fied to reflect the fact that the file is no longer encrypted.

4.1.3 Spotify
Spotify’s distinguishing factor is the use of the Themida

packer to frustrate our DBI platform. Since our instrumen-
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tation is done dynamically, we would normally be able
to copy protected content of packed programs. However,
because Themida contains some evasive behavior that is
able to confuse PIN, we had to use the OllyDBG debug-
ger to first neutralize Themida’s evasiveness by hiding
PIN’s presence. After this, we were able to extract music
from Spotify, despite it being packed with the Themida
packer. While this is not automated in our implementation,
automating such anti-debugging practices is quite feasible.

Spotify encrypts its music files as a whole, so recon-
structing them is straightforward.

4.2 Optimization
A basic implementation of our approach is able to de-

tect and duplicate decrypted data in a program, but is not
yet performant enough to analyze media players. To rem-
edy this, we developed several optimizations. There are
three stages that can be optimized: the selection of loops
to analyze, the instrumentation and analysis of the loops
themselves, and general performance optimizations.

Admittedly, some of the optimizations presented here
are not automated. Specifically, limiting code coverage
requires some domain knowledge to determine which code
should be instrumented. However, MovieStealer can still
function, albeit at a reduced speed, without this optimiza-
tion.

4.2.1 Intelligent Loop Selection
Due to the overhead involved in instrumenting the mem-

ory operations of a loop and keeping track of the data that
a loop is accessing, MovieStealer instruments a limited
number of loops at a time. While a loop is instrumented,
data from its buffers is saved and passed to our analyses.
When a loop is determined by the randomness test to not
be the decryption loop, or it is eliminated by one of the
optimizations mentioned below, we discard the tracked
state and instrument the next loop. To minimize the time
necessary for MovieStealer to find the decryption routine,
we need to select these loops in the most optimal matter.

Limit code coverage. Code coverage greatly influ-
ences the execution speed of MovieStealer. In most cases
it is not necessary to instrument every module of the target
process. For example, only the core libraries of Silverlight
need to be instrumented to bypass PlayReady DRM, rather
than the whole set of libraries of the browser. To reduce
the number of loops that need to be analyzed, we only
select the ones in the suspected DRM code, cutting out a
significant amount of overhead.

On-demand instrumentation. Although we limit
code coverage, there are still many instructions that are
executed only once during initialization, which have noth-
ing to do with decryption. Instrumenting and analyzing
such loops would be a waste of resources. Inspired by
PrivacyScope [50], we have designed MovieStealer to start
after the program has initially loaded. After we load the

authorized media player, we start MovieStealer and begin
the media playback process. Thus, the initialization code
will not be analyzed and MovieStealer will immediately
begin zeroing in on the actual decryption functionality. We
have observed that this significantly reduces the amount of
loops that MovieStealer has to instrument and analyze.

Loop execution frequency. Additionally, we have ob-
served that, in a streaming media player, the decryption
routine is usually one of the most frequently-executed
loops. This is because additional media is constantly being
loaded over the network and must be constantly decrypted.
On the other hand, loops pertaining to other functionality
(for example, UI processing), are executed comparatively
less frequently. To take advantage of this, we prioritize
these loops for analysis ahead of less-frequently executed
loops.

Static instruction analysis. As described in prior
works [20, 46], code that carries out cryptographic func-
tionality tends to utilize a large amount of certain types of
operations. To optimize our analysis, we statically analyze
the amount of arithmetic and bitwise operations in every
loop and de-prioritize loops that lack such operations.

Additionally, we have observed that decryption routines
often contain unrolled loops for increased performance. As
such, we assign a higher priority to loops that are unrolled.
We statically detect unrolled loops by detecting a repeating
pattern of instructions before or after a loop body. While
this is a very simplistic approach to unrolling detection,
we feel that it is adequate. It works for the code that we
have observed in our analyses, and if it fails to detect an
unrolled loop, such a loop would still be analyzed later.

Loop hashing. In order to allow MovieStealer to func-
tion over several executions of a program, we save the
results of our analyses for analyzed loops. We identify
loops using a tuple consisting of the offsets of the basic
blocks comprising the loop from the base address of their
module, and the name of the module. When the analysis
of a loop is finished, the results are saved before the state
for the loop is discarded. This allows us to keep results
over multiple executions of MovieStealer in case it takes
an exceptionally long time to identify the decryption point.
While this optimization can be useful, we did not run into
any cases where we had to rely on it.

The astute reader will note that the relocating loops of
DRM schemes such as Microsoft PlayReady will not be
successfully recorded by this approach. However, this
optimization would still allow us to avoid reanalyzing the
majority of loops in a program, and being able to thus
focus on just the relocating ones will greatly reduce the
time required for MovieStealer to identify the decryption
loop.

4.2.2 Improved Instrumentation
Intelligently selecting loops to instrument greatly im-

proves MovieStealer’s performance, but lots of time is
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Stage Input bandwidth Output bandwidth
Download roughly S roughly S
Decrypt roughly S roughly S
Decode roughly S greater than S

Table 8: The bandwidth of data paths when playing a
protected media file of size S.

still spent analyzing loops that turn out to be unrelated to
decryption. For loops that handle a lot of data, this data
needs to be analyzed in a performant fashion. However,
when instrumenting loops that do not handle much data,
much time is spent waiting to acquire enough data for the
statistical tests. To further optimize this, we created several
approaches to increase the performance of loop instrumen-
tations and to decrease the time necessary to arrive at a
classification.

Bandwidth filtering. Since protected media needs to
be decrypted before being played, we should be able to
find the decryption loop more efficiently by examining its
data throughput. We define the input bandwidth of a data
path as the amount of data in the aggregated input buffer
and the output bandwidth of a data path as the amount
of data in the aggregated output buffer. In Table 8, we
detail the steps that an authorized media player takes when
playing protected content, along with the expected input
and output bandwidth of these functions. Intuitively, a loop
that is decrypting the network traffic should have a similar
bandwidth to the network traffic itself.

We carry out a bandwidth check on each instrumented
loop every two seconds and compare it against the network
traffic (for streaming media players) or the disk traffic (for
GPG). Empirically, we determined that it’s safe to discard
a loop after 20 seconds if it fails the bandwidth test at least
60% of the time. A loop is considered to have failed a
bandwidth test if its bandwidth is not within 60% of the
expected bandwidth.

Avoiding unnecessary data copying. For the random-
ness test, the entropy test and the data dumping, we must
record data chunks that are read or written during the loop
execution, as described before. Since memory operations
happen very frequently, performance is critical in tracking
these reads and writes. Our approach must fulfill these
basic requirements:

1. Moving, copying and modifying data as little as possi-
ble.

2. Imposing as little overhead as possible for addressing
the buffer.

We did not include thread safety as one of the basic
requirements, as in real-world media players few buffers
are accessed simultaneously by multiple threads. We as-
sume that programs that do access buffers concurrently
will handle their own synchronization.

We have different strategies for reading and writing. For
written data, rather than logging what is written, two vari-
ables holding the starting address and the ending address
are maintained for every buffer. Each time a buffer write
occurs, we update the starting address and ending address
so that they correctly reflect the start and end positions that
are written. As we expect these buffers to be consecutive,
there is no problem with expanding the margins over bytes
that are not read yet. For the randomness and entropy tests,
MovieStealer analyzes every byte in the buffers between
the start and end positions.

For content that is read out of buffers, we have a differ-
ent strategy. As data being read during a loop might be
overwritten inside the same loop, our write-buffer strategy
does not always work. Hence it is necessary for Movi-
eStealer to not only record the memory ranges, but also
record the data located at the memory ranges at the time
that reading happens. It is important to note that memory
reading is not always consecutive nor always starts from
the beginning of the buffer. Thus, through the single run of
a loop, only parts of a buffer might be updated. To achieve
better performance, we try to avoid re-copying unchanged
data. This is done by treating each buffer as a concatena-
tion of 4,096-byte blocks. As a loop executes, we mark
the blocks that it modifies, and copy only the modified
blocks when it exits. Our copied-off buffer is an array of
pointers to these blocks. Any unchanged blocks on a new
run are stored as pointers to previously-copied versions of
that data.

4.2.3 Other Optimizations

Call stack optimization. To improve performance, a
call stack key is maintained for each thread, and is updated
each time a call or ret instruction is executed. When a
new function is called, its start address is XORed onto the
call stack key when the function is added to the call stack.
When the program is about to return from a function, we
pop the function from the call stack and wipe it from the
call stack key by XORing its start address again. This way,
we can use the call stack key instead of the whole call
stack to identify a given loop. A dword comparison has
considerably less overhead than a list comparison and, in
practice, we have not seen any call stack key collisions due
to this in our experiments.

This optimization is especially useful in loop selection,
loop analysis, and data dumping.

5 Evaluation
In the course of our evaluation, we strived to demon-

strate two things: that our optimizations work and are
effective at improving performance, and that MovieStealer
is an effective tool for bypassing the DRM of streaming
media services. Since most of the streaming media ser-
vices do not function at all without our optimizations, we
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ran the optimization evaluation on GPG, an open source
cryptography suite. GPG has fewer real-time processing
requirements than real-world media players and as such
works despite high overhead from unoptimized analyses.

We evaluated MovieStealer’s effectiveness on a series of
online streaming services, including Netflix, Hulu, Ama-
zon Video, and Spotify. Our experiments consisted of
loading the streaming application (in all cases except for
Spotify, this was done by visiting the appropriate web-
page in the browser. Spotify is a stand-alone application),
starting MovieStealer, and playing a video or a song. Movi-
eStealer would then pinpoint the decryption location and,
on future runs, would begin dumping the media file. The
reconstructor would then be run to create a playable media
file. We verified that the media file was playable by playing
it in a different, unauthorized player.

We carried out three experiments for each DRM plat-
form, treating Hulu and Amazon Video as a single platform.
For each experiment, we started MovieStealer from scratch.
We recorded the number of loops identified, the loops ana-
lyzed before MovieStealer zeroed in on the sensitive loop,
the total amount of analyzed loops that contain detected
buffers, the total number of buffers identified, the total
number of decryption loops that MovieStealer identified,
and the total time until data could start being dumped. In
all of the experiments, the loop responsible for decrypting
the encrypted content was partially unrolled as a perfor-
mance optimization.

To the best of our knowledge, MovieStealer is the first
publicly described approach with the ability to successfully
copy content protected by Microsoft PlayReady DRM with-
out screen scraping techniques, as well as the first imple-
mentation to do cryptographic identification and copying
of content at runtime.

MovieStealer was able to function on all DRM ap-
proaches that we evaluated.

Effect of optimizations. We carried our our optimiza-
tion evaluations by executing MovieStealer against GPG
as it decrypted a video file. First, we measured the per-
formance of MovieStealer with all optimizations enabled,
then measured the performance of first the callstack key
optimization and then the code coverage limit optimiza-
tion by running MovieStealer with all other optimizations
enabled, and finally enabled some of our optimizations
one-by-one to demonstrate their effects. The results can be
seen in Table 9.

Necessary optimizations. Some of our optimizations
were necessary to get the media players to function at
all. As described in Section 2.3, these media players are
high-performance pieces of software with some real-time
requirements. For example, Netflix implements content
expiration and has minimum performance requirements
below which it will not play videos, and an unoptimized
approach fails to meet such requirements. We have found

Optimizations enabled LT S
All 7 31
All but callstack key 6 47
All but limit code coverage 10 34
Only limit code coverage 9 65
Only static instruction analysis 10 49
Only bandwidth filtering 35 180
Only execution frequency 40 3,480

Table 9: Results for GPG. LT = loops traced, S = total
seconds before the decryption loop was identified.

Experiment no. 1 2 3
Loops identified 1,529 1,258 1,647
Buffers identified 14 6 1
Loops traced 46 35 62
Seconds elapsed 281 146 175

Table 10: Results for Amazon Video and Hulu

Experiment no. 1 2 3
Loops identified 2,876 2,274 2,950
Buffers identified 88 80 152
Loops traced 8 58 54
Seconds elapsed 86 110 191

Table 11: Results for Netflix

Experiment no. 1 2 3
Loops identified 2,305 1,845 1,667
Buffers identified 60 69 63
Loops traced 224 204 138
Seconds elapsed 536 739 578

Table 12: Results for Spotify

that it is possible to analyze the streaming media players
by enabling, at minimum, all of the loop selection opti-
mizations.

Non-determinism. Non-determinism is introduced
into the results from several sources. To begin with, the
programs in question are complex and multi-threaded, and
rely on external resources to function. This means that
the sequence that code is executed (and that MovieStealer
analyzes it) in varies between runs.

Additionally, MovieStealer starts on demand, so it might
begin analyzing different parts of the program in different
runs. This will also make it analyze code in different order.
Finally, the code relocations used by PlayReady DRM adds
extra indeterminism to the mix. However, this does not
have an effect on the final, successful decryption result.
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6 Discussion
The expected use of an approach such as MovieStealer

would be to save streamed movies either for later watching
or for sharing with others. The latter approach is, of course,
illegal. Our intention is not to aid illegal activity, and we
discuss this further in Section 7.

It is also important to stress that in order for Movi-
eStealer to function, the user must be authorized to play
the content in the first place.

One possibility for future direction is a look into au-
tomatically cracking HDCP-protected content. Since the
master keys are leaked, it might be possible to analyze
encrypted-encrypted data paths and attempt to automati-
cally use the HDCP keys to decrypt the content further.
With the relatively low amount of buffers identified in
the video experiments, this might be feasible from a per-
formance standpoint. This would allow MovieStealer to
function on devices with dedicated hardware for hiding
content as it’s re-encrypted for HDCP.

Another potential direction would be use MovieStealer
to automatically recover encryption keys from running
software. After detecting a decryption loop, MovieStealer
could check the other inputs to that loop or to other loops
that touched the encrypted buffer to determine if such
inputs are the keys to the encryption.

Furthermore, it would be interesting to investigate the
use of our approach to inform systems such as Inspector
Gadget [34] in order to automatically export the encryp-
tion/decryption functionality of programs.

6.1 Countermeasures
Although our approach proved to be effective on cur-

rent online streaming services, there are steps that could
be taken by the authors of the DRM schemes to protect
themselves against MovieStealer.

Anti-debugging. Applying extreme anti-debugging
and anti-DBI techniques would prevent our implemen-
tation, in its current form, from working. However, noth-
ing prevents one from implementing MovieStealer in a
full-system emulator such as QEMU [16], rendering the
approach immune to such evasions.

Attacking our loop detection. There are several ways
to prevent MovieStealer from properly detecting loops
within a program. A full unrolling of relative loops could
effectively prevent the real loop from being detected by
MovieStealer. However, full unrolling will result in loss of
flexibility of the loop, and detection might still be possible
using pattern matching approaches. Alternatively, protect-
ing sensitive program modules by using virtual machine
interpreted instructions would be very effective, as most of
our loop identification approaches would not work. How-
ever, the performance penalty for doing this would likely
be unacceptable.

Attacking the buffer detection. We cannot properly
analyze a buffer that has a nonconsecutive layout in mem-
ory. For example, if a buffer only occupies one byte every
three bytes, these bytes will not be identified as a valid byte
array, let alone a buffer. We have not seen these techniques
being used, and implementing them will likely carry an
overhead cost. However, it is a definite possibility with
modern hardware.

Along these lines, an effective countermeasure would
be a functional hardware DRM scheme. However, it is not
clear how to implement this in a way flexible enough to
be resistant to events such as key leaks while being secure
enough to be resistant to bypass.

Attacking the decryption detection. One very effec-
tive countermeasure would be to intersperse non-random
data in the encrypted buffers, and to insert random data
into the decrypted buffer. This would lower the random-
ness of the encrypted buffer and raise the randomness of
the decrypted buffer, possibly defeating our analysis. The
decoder would then be modified to ignore the inserted ran-
dom bytes so that it can successfully replay the video. It
is important to note that this approach would require a
modification of the decoder, as removing the random bytes
beforehand (and reducing the randomness of the buffer in
question) would trigger MovieStealer’s decryption detec-
tion.

Attacking the pirates. Watermarking has proven to
be incredibly effective in tracking piracy. The originator
could watermark the media [28, 17, 18], and in the event
of piracy, the pirates could be identified by this watermark.
This is a very effective technique, and it has been used
to successfully track down pirates [13, 6]. While some
research has been done toward the circumvention of wa-
termarks [26, 35], a watermark-related arms race might be
easier for content providers than the design of mechanisms
to counteract approaches similar to MovieStealer.

7 Ethical and Legal Issues
In this section, we discuss the ethical and legal implica-

tions of our work.
First of all, obviously our work was never motivated

by the desire to obtain protection-free copies of the me-
dia for re-distribution (piracy) or to create and distribute
tools that would allow others to bypass content protection
mechanisms.

Our goal was to analyze the security of the cryptographic
mechanisms used by these emerging services, and to de-
velop an approach that would demonstrate the general
fallacy behind these schemes, in the hope that our findings
would prompt the development of new, more secure ap-
proaches to content protection that are not vulnerable to
our attack. This is especially important if cryptography-
based protection mechanisms are touted to “protect” user-
generated content (e.g., independent movies distributed
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exclusively through streamed media) and give to the con-
tent authors (i.e., the users of the distribution service) a
false sense of security with regards to the possibility of
malicious third parties stealing their content.

The legality of this research is tightly related to the
location where the research is performed. For example,
there are some subtle but important differences between
the laws in the United States and the laws of the European
Union and Italy [23].

The research was carried out in the United States, and
hence, it falls under the Digital Millenium Copyright
Act [25]. The DMCA prohibits the circumvention of con-
tent protection mechanisms, but includes explicitly pro-
tection of security research (referred to as “Encryption
Research” – see Section 1201(g) of the DMCA.) We feel
that this research falls under this protection and is there-
fore legal. Citing from the DMCA document: “Factors in
determining exemption: In determining whether a person
qualifies for the exemption under paragraph (2), the fac-
tors to be considered shall include the information derived
from the encryption research was disseminated, and if so,
whether it was disseminated in a manner reasonably calcu-
lated to advance the state of knowledge or development of
encryption technology, versus whether it was disseminated
in a manner that facilitates infringement under this title
or a violation of applicable law other than this section,
including a violation of privacy or breach of security.”

We feel that the way in which this research is dissem-
inated is clearly focused on advancing research and not
to facilitate infringement. In fact, we have chosen not
to publicly distribute the source code of our tool or to
provide ways to easily attack specific technologies. In ad-
dition, with the help of the Electronic Frontier Foundation,
we contacted each of the companies involved in order to
disclose these DRM workarounds responsibly. Microsoft
was notified because they are the vendor of the Silverlight
DRM used in Netflix. Adobe was notified because they
are the vendor the RTME implementation for Amazon and
Hulu. Netflix, Amazon, and Hulu were notified because
the DRM being bypassed is used by their services. Spotify
was in the unique position of falling into both categories.
Of course, we contacted them as well.

Of the companies contacted, Netflix, Amazon, and Hulu
did not respond to our initial or follow-up contacts, nor
when contacted through EFF’s channels of communication.
However, Microsoft, Adobe, and Spotify responded, ac-
knowledged the issues, and discussed workarounds. All
three companies reviewed our work, provided comments
for this paper, and encouraged its publication, for which
we are grateful.

In summary, our goal is to improve the state-of-the-art
in cryptographic protection and not to create and distribute
tools for the violation of copyright laws.

8 Conclusions
In this paper, we have proposed MovieStealer, a novel

approach to automated DRM removal from streaming me-
dia by taking advantage of the need to decrypt content be-
fore playing. Additionally, we have outlined optimizations
to make such DRM removal feasible to do in real-time, and
have demonstrated its effectiveness against four streaming
media services utilizing three different DRM schemes.
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