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Abstract
Smart contracts are immutable programs executed in
the context of a globally distributed system known as a
blockchain. They enable the decentralized implementation
of many interesting applications, such as financial protocols,
voting systems, and supply-chain management. In many
cases, multiple smart contracts need to work together and
communicate with one another to implement complex
business logic. However, these smart contracts must take
special care to guard against malicious interactions that might
lead to the violation of a contract’s security properties and
possibly result in substantial financial losses.

In this paper, we introduce a class of inter-program
communication flaws that we call confused contract vulner-
abilities. This type of bug is an instance of the confused
deputy vulnerability, set in the new context of smart contract
inter-communication. When exploiting a confused contract
bug, an attacker is able to divert a remote (inter-contract)
call in a confused (victim) contract to a target contract
and function of the attacker’s choosing. The call performs
sensitive operations on behalf of the confused contract, which
can result in financial loss or malicious modifications of the
persistent storage of the involved contracts.

To identify opportunities for confused contract attacks at
scale, we implemented JACKAL, a system that is able to au-
tomatically identify and exploit confused contracts and can-
didate target contracts on the Ethereum mainnet. We lever-
aged JACKAL to analyze a total of 2,335,193 smart contracts
deployed in the past two years, and we identified 529 poten-
tial confused contracts for which we were able to generate
31 working exploits. When investigating the impact of our
exploits, we discovered past and present opportunities for con-
fused contract attacks that could have compromised digital
assets worth more than one million US dollars.

1 Introduction

In the past few years, the interest in blockchain-powered
decentralized applications (dApps) has risen considerably.
This interest drove the market capitalization of Ethereum [20]
– the most popular blockchain platform for dApps – from
51 billion to 568 billion dollars in just one year (Nov. 2020 -
Nov. 2021) [82]. Despite the recent market correction, which

saw Ethereum’s market cap drop to 201 billion dollars [66],
the ecosystem is still able to attract huge investments. One
reason is the broad interest in and development of many types
of distributed applications.

Blockchain-powered applications are implemented
via smart contracts: immutable programs stored on the
blockchain in the form of bytecode, which is executed by the
Ethereum Virtual Machine (EVM) [77]. Users interact with
the system via signed transactions, wherein they specify a
smart contract’s function they want to invoke, together with
its arguments. The Ethereum network’s distributed consensus
mechanism produces a strict ordering of transactions, which
are emitted at regular intervals (∼12 seconds) in groups
called blocks. All participating nodes in the network execute
each transaction in order whenever a new block is created.
Through this process, the Ethereum network maintains a
consistent global state across all nodes.

Smart contract functions commonly manipulate financial
assets, such as tokens and Ether (ETH) [21], which is the
native cryptocurrency on the Ethereum network. Smart
contracts may also read and write their own persistent
storage, emit log events, and call functions of other contracts.
Through their functionality, smart contracts help to build the
Decentralized Finance (DeFi) [19] ecosystem: a complex
network of decentralized financial protocols enabled by the
blockchain infrastructure.

In contrast to the traditional financial system, DeFi
promises to bring an increase in both transparency and
democratization of financial tools, together with full accessi-
bility and control over personal funds [59]. However, DeFi’s
benefits come at the cost of drastically increasing the risk of
financial losses. In fact, as smart contracts run on a public
blockchain, they can interact with – and be scrutinized by
– anyone. In particular, when a smart contract suffers from
a security bug, a successful attack from a malicious actor can
potentially drain millions of dollars worth of assets. It can be
very hard, if not impossible, to recover lost funds due to the
immutability of the blockchain network [60] and the intrinsic
lack of a central authority. The higher stakes for blockchain
security attract a multitude of different kinds of actors, who
race toward discovering security vulnerabilities in smart
contracts. As a result, a number of multi-million-dollar bug
bounties were recently awarded to white hat hackers [12].

Thanks to the attention from both security professionals
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and the academic research community, the impact and
prevalence of certain classes of vulnerabilities has been
considerably reduced in modern contracts. This includes
integer overflow bugs, via the usage of safe math libraries [55],
and re-entrancy [7], via specific checks ensuring single
entrance [54]. In addition, these and other “traditional” vulner-
abilities have been the target of many automated verification
and bug-finding solutions [4, 5, 13, 28, 31, 37, 39, 48, 57].

Interestingly, recent attacks made use of cross-contract
vulnerabilities that have little to no automated discovery
support, and they can be difficult to identify even via manual
reviews performed by experts. An important property of smart
contracts is the fact that their public functions can be directly
called by any other programs on the blockchain at any point
in time. Hence, it is common for smart contracts to guard
sensitive functionality with access control checks that are de-
signed to accept interactions only from specific callers (these
can be user accounts or contracts). Unfortunately, the com-
plicated mix of inter-contract communication, and the often
convoluted and custom access control policies implemented
by smart contracts, can easily result in hidden logic bugs. An
example of such a bug is an inter-contract vulnerability that
affected one of the biggest DeFi platforms, PolyNetwork [58],
and led to a financial loss of $610 million in August 2021 [62].
In this case, the attacker exploited an inter-contract commu-
nication bug in one of the primary PolyNetwork contracts,
misdirecting one of its remote calls to another PolyNetwork
contract that is responsible for maintaining the list of active
administrators. Then, thanks to the existing trust relationship
between these two contracts, the attacker managed to add
themselves as a new administrator, escalating their privileges,
and ultimately draining a significant amount of funds.

The complexity, and the impact, of the PolyNetwork
attack, certainly calls for a deeper understanding of the
roots of cross-contract vulnerabilities and the development
of automated solutions that are not only able to identify
bugs in a single smart contract but rather find unsafe
cross-contract interactions across the entire ecosystem. In this
paper, we do just that. First, we introduce and characterize
confused contracts, an important class of cross-contract
vulnerabilities. Then, we present JACKAL, which is a first
step in automatically detecting such flaws.

In this paper, we make the following contributions:

• We describe the fundamental mechanics at the basis of
the confused contract class of bugs, which is an instance
of the confused deputy class of problems in the context
of inter-contract interaction.

• We propose a novel methodology to detect confused
contract attacks at scale, and we implement a prototype
system that we used to analyze 2,335,193 smart contracts
binaries, finding a total of 529 potential vulnerabilities.

• We show the impact of our findings by producing 31
working exploits with the potential of jeopardizing
assets worth more than one million US dollars.

2 Background

2.1 Blockchain
A blockchain is a decentralized, distributed ledger on which
the participating nodes collectively advance the state of an
append-only database. In particular, nodes record transactions
over the network and register the creation of new blocks
in the database. New data can only be added to the end of
the blockchain in the form of a new block that contains an
ordered record of recent transactions. In turn, this creates
a permanent, tamper-evident history of all the transactions
in the network, allowing for a secure and transparent way to
store and transfer data or value. To motivate individuals to
contribute to the maintenance of the blockchain, a set amount
of cryptocurrency is awarded for creating each new block.

2.2 Smart Contracts
Modern blockchains, such as the Ethereum blockchain [20],
are known to be “programmable blockchains.” Specifi-
cally, together with the standard currency-bearing user
accounts [22], this kind of blockchain supports the de-
velopment of decentralized applications (dApps) that can
be used to create new kinds of online services. From
an implementation point of view, dApps are created by
developing smart contracts. The code of a smart contract
defines its business logic and implements the terms of an
agreement between different parties. For instance, a smart
contract that sells digital assets might require a specific
amount of cryptocurrency (e.g., ETH [21]) to be deposited
by a user before the user can register their ownership of an
asset. Smart contracts are usually developed using high-level
programming languages (e.g., Solidity [1], or Vyper [70]).
Once compiled, smart contracts are stored on-chain in the
form of bytecode and executed on-demand by EVM.

2.3 Smart Contract Execution
While the execution state of a smart contract is defined by
many elements [36], in this paper, we focus on the following
four components: (1) program counter, (2) stack, (3) memory,
and (4) persistent storage.

Program Counter: The program counter keeps track of the
next instruction that needs to be executed.

Stack: The EVM is a stack-based virtual machine, that is,
values are pushed and popped onto the stack to perform
all arithmetic and control-transfer operations inside the
contract.

1794    32nd USENIX Security Symposium USENIX Association



Memory: The memory is a byte-addressable volatile storage
for various EVM instructions. Similar to the stack, the
memory starts empty when a smart contract begins its
execution. As the code is running, instructions can read
and write data at different offsets in memory.

Persistent Storage: The storage is a key-value store with
256-bit keys and values. The content of the storage
is kept on the blockchain, and hence, persists across
multiple smart contract executions. Similarly to
memory, specific opcodes (i.e., SLOAD, SSTORE [77])
can read/write data at different key slots in the storage.

2.4 Smart Contract Invocations

Any function of a smart contract that is explicitly marked
as public by the developer is a possible entry point for
that contract. That is, it can be directly invoked by any
blockchain user who sends a corresponding transaction (Tx),
or another contract that sends an internal transaction (iTx).
When submitting a transaction that invokes the code of a
contract, one has to pay a fee (known as the gas fee), which
is subtracted from the balance of the transaction initiator.

Each transaction has a context. Such context includes the
msg.sender (determining the current address interacting
with a contract), the msg.value (specifying the amount of
ETH transferred), and the tx.origin (specifying the sender
of the initiating transaction [18]).

The execution of a smart contract in the EVM is quasi-
Turing-complete: the EVM can perform any computation
as long as the user initiating the execution has sufficient
ETH [21] to pay the required gas fee (note that there is an
upper limit to the gas fee that can be specified [23]). This
mechanism is a defense against denial of service and general
abuse of resources [9].

Each transaction includes a byte-string known as the
CALLDATA. The CALLDATA consists of (1) the first four
bytes, which identify the targetFunction to be executed,
and (2) the remaining bytes, which specify the arguments
passed to the function. The four bytes that select the target
function correspond to the KECCAK256 [76] hash of the
function prototype.

Once a smart contract receives a transaction, the
targetFunction bytes are extracted from the CALLDATA
and used to dispatch the execution to the specified function.
The function body is then responsible for interpreting
the argument data. The computation can either complete
successfully (i.e., the execution reaches the end of the
function with no error) or fail, resulting in a “revert” of the
execution. If the execution is reverted, any changes to the
contract’s persistent storage are rolled back.

During its execution, a smart contract can invoke functions
of other smart contracts, whose code will be executed as
part of the same transaction. This type of composable

software design enables the implementation of advanced
application protocols. The communication between different
smart contracts happens via so-called internal transactions,
triggered by one of four EVM opcodes, namely CALL,
DELEGATECALL, CALLCODE, and STATICCALL. These four
opcodes differ in terms of how the caller and callee interact
with each other, and how the call’s metadata is propagated.

To understand the fundamentals of the confused contract
vulnerability, it is necessary to discuss the effects of the
different opcodes on the involved contracts (sender and
receiver) and their execution context. In particular, we look
at how caller information is propagated from the sender to
the receiver, and whose persistent storage is accessed when
the receiver is executing code that includes SLOAD/SSTORE
opcodes. In Figure 1, we summarize the main differences
between the execution models of these opcodes and the
metadata propagation during the internal transaction (iTx).
One important difference between each opcode is how
persistent storage access is handled. When Contract B uses
CALL or STATICCALL to call a function in Contract C, the
receiver (target contract C) accesses its own persistent storage
when executing SLOAD/SSTORE opcodes; in the case of
STATICCALL, the persistent storage is read-only. On the other
hand, when Contract B (the sender) uses either CALLCODE
or DELEGATECALL, a persistent storage operation performed
by the code in Contract C accesses the persistent storage
of Contract B. A second difference is how msg.sender
is handled. Specifically, CALL and CALLCODE change the
msg.sender attribute of the transaction iTx to the address
of the sender B. For the other two opcodes, the msg.sender
attribute remains unchanged and holds the value of the
originator of the transaction (which is User A in our example).

All four opcodes that are used for smart contract commu-
nication require specific arguments [77] to be pushed on the
stack before the call:

gas: monetary fee for the execution of the callee’s code.

tAddr: the address of the callee.

value: amount of ETH to be sent together with the call (only
for CALL/CALLCODE).

argOffset: byte offset in memory where the CALLDATA for
the iTx is located. The first four bytes specify the tFunc
signature, followed by the arguments for the function.

argSize: size of the CALLDATA located in memory at the
argOffset.

retOffset: byte offset in the memory where the return data
(computed by the callee) will be stored.

retSize: size of the data returned by the callee (located in
memory at retOffset).
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Figure 1: Overview of inter-contract communication operands and their semantics. Tx refers to the transaction initiated by a
user account (this is A in our example). iTx refers to an internal transaction between smart contracts. We highlighted in red
the elements that are relevant to the confused contract attack.

In this work, we focus our analyses on the transaction’s
input, i.e., CALLDATA, the target address tAddr, and the
target function tFunc.

3 Motivation and Threat Model

A confused deputy vulnerability arises when a higher-
privileged component (called the deputy) in a system
incorrectly allows a lesser-privileged component to request or
trigger the execution of actions that require elevated privileges.
For example, in an operating system, a user process that is
not allowed to request the download of files from the Internet
could trick the browser process into downloading a file on the
process’ behalf. In this case, the browser acts as the confused
deputy, as it did not correctly check whether the requested
action is permitted and performed actions on behalf of a user
process that is not permitted to download files, allowing this
process to bypass the operating system’s security policy.

In general, a successful confused deputy attack requires the
attacker to learn about the deputy’s existence and capabilities
and to find a way to make the deputy carry out actions on its
behalf (actions that the attacker cannot perform themselves).
Such requirements are easier to fulfill when one considers the
public nature of the blockchain, which allows one to retrieve
the bytecode of any deployed smart contract. These ideal
conditions, in turn, enable the development of large-scale
automated analyses that identify confused contracts and their
associated possible targets.

The core intuition behind the confused contract vulnera-
bility is as follows. First, the confused contract must include
at least one call to another smart contract (as discussed in
Section 2.4). Second, the attacker must be able to influence
the arguments of such a call to control both the target contract
and the target function. Third, the attacker-chosen function

in the target contract must perform a security-sensitive action
that depends on the identity of the caller (e.g., based on the
value of msg.sender). As a result, the confused contract
performs such actions on behalf of the attacker.

In this work, we focus on two scenarios: (1) a target
contract performs persistent storage manipulations when
called by a confused contract, or (2) assets of the confused
contract stored in a target contract are directly transferred to
an account of the attacker’s.

Scenario (1) leverages the confused contract’s privileges
to modify the target contract’s storage and can thus enable
a more complex attack chain – for example, this happened in
the PolyNetwork attack. Scenario (2) has an immediate effect
on the confused contract, whose assets are instantly lost.

3.1 Confused Contract Example

Consider a simple example showing how a developer
mistakenly creates a smart contract vulnerable to a confused
contract attack.

Alice wishes to implement a trading bot by creating a
contract called TradingBot. This contract maintains custody
of some tokens and, when directed by the owner (who is
Alice), it can exchange one type of token for another. Alice
knows that the DeFi ecosystem is changing rapidly, and she
would like to remain forward-compatible with future types of
exchanges. However, the various exchanges all have different
APIs, and moreover, she does not know what exchanges
might exist in the future.

Alice decides to implement her trading bot as illustrated
in Figure 2. Specifically, she writes an execute function that
accepts a list of trading operations ops as input and then exe-
cutes them in a loop. This design is actually directly inspired
by similar bots on the Ethereum chain, and gives Alice the flex-
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1 contract TradingBot {
2 struct Op { address target; bytes _calldata;}
3 function execute(Op[] memory ops) public {
4 uint i;
5 for (i = 0; i < ops.length; i++)
6 ops[i].target.call(ops[i]._calldata); }}

Figure 2: Solidity code of the TradingBot. The execute
function receives a list of tuples (Line 3) that are later used
to make flexible, external function calls (in Line 6).

1
2 contract xyzToken {
3 mapping (address => unit) public vault;
4 function transfer(address dst,uint256 val) public
5 {
6 address src = msg.sender;
7 require(vault[src] >= val);
8 vault[src] = sub(vault[src], val);
9 vault[dst] = add(vault[dst], val);

10 return true; }
11 function balanceOf(address addr) public {
12 return vault[addr] }}

Figure 3: Solidity code of a contract implementing a
custom crypto-currency. The function transfer, provided
by the standard ERC20 [52] interface, updates the persistent
storage of the xyzToken contract according to the passed
parameters. The function balanceOf returns the amount of
token held by the input address addr.

ibility to construct the appropriate list of calls as she sees fit.
In particular, Alice is free to encode any new exchange func-
tion’s interface as she observes them deployed in the future.
Benign Use Case. In the regular use case, Alice uses her
trading bot to exchange her tokens. For example, consider
Figure 4, which shows Alice trying to exchange xyz
tokens for abc tokens. The transaction begins with Alice
invoking the execute function of the TradingBot with the
appropriate arguments (Tx1 in Figure 4). Instructed by Alice,
the TradingBot directly invokes the xyzToken’s transfer
function (Figure 3), which modifies the xyzToken contract’s
persistent storage to reflect that 100 xyz tokens are moved
from the TradingBot account to the exchange account, DEX.
This represents the payment for the token exchange (iTx1
in Figure 4). After the first call, the TradingBot is instructed
to call the DEX contract’s swap function and specifies the
amount of abc tokens it would like to receive as the result
of the exchange operation (iTx2 in Figure 4). DEX checks
for the appropriate amount of payment (not illustrated here),
and then transfers 50 abc tokens (represented by iTx3 in
Figure 4) to TradingBot using the transfer function in the
abcToken contract, whose implementation is identical to the
one in Figure 3. The transaction then completes.
Malicious Use Case. Due to the fact that the TradingBot’s
execute function is marked as “public”, and there is no

access control mechanism in place, any unprivileged user
can interact with it. Hence, an attacker, Mallory, can craft
CALLDATA to invoke TradingBot’s function execute
(Tx2 in Figure 4). In her attack, Mallory instructs the
TradingBot to call xyzToken’s function transfer, sending
all of TradingBot’s xyz tokens balance to Mallory (iTx4 in
Figure 4). With the same process, Mallory can re-use the same
attack to take ownership of all TradingBot’s abc tokens.
Discussion. The two fundamental enablers for the exploit
of the confused contract vulnerability are the following:
First, the identity of the TradingBot can be “stolen” to
communicate with other contracts because the attacker
controls the input to the call in the execute function (as
illustrated in Figure 2, Line 3). Second, there exists on the
blockchain a second contract (target contract) that holds
assets on behalf of the TradingBot. Here, the xyzToken
contract is an instance of a target contract. Both conditions
are necessary for a confused contract vulnerability to exist.

For this specific example, to remove the vulnerability,
Alice would need to validate the identity of any address that
is interacting with her TradingBot. In particular, she could
implement an access control routine that checks the value
of msg.sender before any cross-contract interactions.

3.2 Confused Contract Attacks
In this work, we defined an attack as a confused contract
attack if it satisfies the following three requirements:
(R1) A successful attack needs a pair of contracts: a confused
contract Cc and a target contract Ct. The contract Cc contains
a public function that serves as an entry point for the attacker.
(R2) The execution of a public function in Cc leads to a
cross-contract invocation (a call) whose tAddr and tFunc
arguments (see Section 2.4) can be controlled by the attacker.
(R3) The attacker uses their control over the “open” call
in Cc to invoke a function in Ct, and this function performs
modifications to the Ct persistent storage only when the value
of msg.sender is the address of the confused contract Cc.
That is, the target contract Ct associates some privileges (e.g.,
access to protected storage) with the confused contract Cc. By
accessing the target contract through the confused contract,
the attacker is able to trigger actions in Ct with the privileges
of Cc. When the three aforementioned requirements are
satisfied, an attacker may perform security-critical actions,
such as writing attacker-controlled values in the persistent
storage of the target contract or directly drain the assets of
the confused contract.

Given (R3), to “steal” the identity of a confused contract
during a cross-contract interaction, we want to consider only
opcodes that update the msg.sender value at each internal
transaction (iTx), and allow a Ct to perform modifications
of its persistent storage. According to the semantics of the
communication opcodes introduced in Section 2.4, CALL and
CALLCODE are then the only opcodes that can be used for
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TradingBot (TB) xyzToken abcTokenDEX

execute(
   xyzToken.transfer(DEX,100),
   DEX.swap(xyz,abc)
  )

transfer(DEX, Val: 100)
msg.sender = A
tx.origin  = A

msg.sender = TB
tx.origin  = A

swap(xyz, abc)

msg.sender = TB
tx.origin  = A

msg.sender = DEX
tx.origin  = A

transfer(TB, Val: 50)

vault[TB]  = 250 - 100  = 150
vault[DEX] = 300 + 100  = 400

vault[DEX] = 250 - 50 = 200
vault[TB]  = 10 + 50  = 60

Mallory (M)

execute(
   xyzToken.transfer(M,150),
  )

msg.sender = M
tx.origin  = M

msg.sender = TB
tx.origin  = M

transfer(M, Val: 150)

vault[TB] = 150 - 150 =   0
vault[M]  = 0 + 150   = 150

Storage write (w)

Storage write (w)

Storage write (w)

Benign
Use Case

CALL

Tx2

Tx1

Malicious
Use Case

Alice (A)

(iTx1)

CALL
(iTx2)

CALL
(iTx4)

CALL
(iTx3)

Figure 4: Overview of benign and malicious use cases when leveraging the TradingBot contract to operate on the blockchain.
The solid arrows correspond to transaction Tx, while the dashed arrows correspond to internal transaction iTx. TB executes
iTx1-3 in response to Tx1 sent by Alice A. Later, the attacker M sends a malicious transaction, Tx2, to TB, exploiting its identity
to transfer all the TB tokens to M. In the malicious use case, the contract TB is the confused contract, and the contract xyzToken
is the target contract.

a confused contract attack. In fact, a STATICCALL does not
allow a Ct to perform write operations on the storage, while a
DELEGATECALL does not update the msg.sender value when
creating an iTx, and therefore we consider both of them
out of scope. Furthermore, even if compliant with (R3), we
decided to ignore the CALLCODE opcode because it has been
deprecated in favor of DELEGATECALL [17]; in addition, it is
used in less than 0.02% of the contracts in our dataset.

It is worth noting that a confused contract attack is
fundamentally different from the traditional exploitation of
access control vulnerabilities in smart contracts [5, 29, 43]:
given a contract, we are neither looking for functions with
missing access control checks, nor are we trying to find a way
to bypass insufficient access control checks present in the
contract. Rather, in a confused contract attack, our goal is to
satisfy the access control checks in a Ct by “borrowing” the
identity of the expected contract (i.e., the confused contract)
through a controllable CALL within its code. In fact, when
we run tools that look for access control vulnerabilities, such
as AChecker [29], against real-world contracts equivalent to
the TradingBot (Figure 2) and the xyzToken (Figure 3), no
warnings are raised.

To demonstrate the fundamental difference between the
exploitation of classic access control vulnerabilities and
confused contract vulnerabilities, consider the contract
in Figure 5. NFTGamble allows users to participate in a

1 contract NFTGamble {
2 uint256 FEE = 100000000000000wei; //0.0001 ETH
3 uint256 NFT_ID = 0x1 // NFT_ID under gambling
4 address _owner = <OWNER >;
5 address _NFT_market = <NFTMARKET >
6 public changeOwner(){
7 _owner = msg.sender; }
8 public withdrawFees(){
9 if(msg.sender == _owner){

10 payable(msg.sender).transfer(this.balance);
11 }}
12 public gamble(

address gambler , bytes callbackdata) payable{
13 if (msg.value >= FEE){
14 res = check_win()
15 if(res){
16 _NFT_market.transferFrom

(this.address, gambler , NFT_ID);
17 gambler.call(callbackdata); // notify user
18 NFT_ID+=1;
19 }
20 }}}

Figure 5: An NFT-gambling contract affected by a confused
contract vulnerability and a separate access control issue.

gambling game for NFTs by calling the gamble function
(Line 12). In particular, users can specify the address of
the account that is enrolling in the gambling (gambler),
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and some bytes (callbackdata) used in a callback to
notify gamblers in case they win (Line 17). By registering
this callback, a gambler can implement further advanced
logic (such as automatically re-selling the NFT) once the
notification is received. If a user happens to be a winner
(decided by the function check_win at Line 14), the contract
transfers the ownership of the current NFT (NFT_ID) to
the gambler address (Line 16). Immediately after that, the
contract notifies the gambler by performing a call using the
callbackdata specified during the function invocation. The
contract has two distinct and unrelated vulnerabilities.
Access Control Vulnerability. The first vulnerability is a
missing access control check in the changeOwner function
(Line 6). In fact, anyone can call this function and change the
_owner variable, thus gaining the privileges to withdraw all
the fees collected by NFTGamble (Line 10). This vulnerability
can be identified by tools such as AChecker [29], but it is not
considered within the scope of JACKAL.
Confused Contract Vulnerability. An attacker can ex-
ploit the contract by calling the function gamble with
the gambler parameter equal to <NFTMARKET>, and the
callbackdata that will trigger a malicious call to the
setApprovalForAll function [56] in the target NFT Market
contract. Practically, when the NFTGamble contract will
execute the callback at Line 17, it will perform a CALL to
NFTMARKET.setApprovalForAll(<ATTACKER>, True),
giving the attacker administrative privileges over all the NFTs
owned (by NFTGamble) within the NFT Market contract.
This is an instance of a confused contract vulnerability that is
detected using our proposed approach and would be instead
missed by systems like AChecker [29].

From this example, it is also clear that while most access
control vulnerabilities can be identified by looking at a single
contract, confused contract vulnerabilities exist because of
the (trust) relationships between multiple contracts, and, as
a result, these vulnerabilities require analyses that take into
account multiple contracts and the way in which they interact.

4 Approach

To identify the requirements for a confused contract attack on
the blockchain (R1-3 discussed in Section 3.2), we developed
JACKAL. Figure 6 presents an overview of our system. In the
following paragraphs, we describe each step of our analysisl.

1 Bytecode Lifting and CFG Construction. To begin,
JACKAL takes the smart contract’s EVM bytecode as input,
lifts it to an intermediate registry-based representation, and
runs a state-of-the-art CFG reconstruction analysis and con-
stant propagation procedure using Gigahorse [31].

2 Call Inspector. Once the CFG is built, JACKAL stati-
cally checks if the contract contains any CALL opcodes. If so,
the system analyzes each one to understand if the CALL’s argu-
ments tAddr and tFunc can be controlled by the attacker. To

do this, JACKAL first statically verifies that both arguments are
not constant (if they are constant, they cannot be controlled by
the attacker). Then, JACKAL uses the reconstructed CFG and
callgraph to identify entry points (that is, public functions)
that are connected to the CALL. Starting from an entry point,
JACKAL initiates a symbolic execution directed toward the
CALL opcode, using fully symbolic input. Note that the sym-
bolic input represents the CALLDATA that an attacker would
send as part of a (malicious) transaction Tx. After reaching the
CALL opcode location, JACKAL extracts the path constraints
(for the path from the entry point to the CALL). Using these
constraints, the system asks the solver to find a solution for
the symbolic CALLDATA that is used as the input. If such
a solution exists, JACKAL attempts to infer the relationship
between the CALLDATA and the tAddr/tFunc arguments of
the CALL. Whenever both the tAddr and tFunc values can be
chosen by the attacker, the two attack requirements (R1 and
R2) are satisfied. As a result, the contract under analysis is
tagged as a confused contract candidate (Cc).

3 Path Feasibility Validator. We then verify the feasibil-
ity of all confused contract warnings using the Path Feasibility
Validator. This component verifies, using a local blockchain
instance, if it is possible in practice to use the synthesized
(concretized) CALLDATA to reach the target CALL. This al-
lows the tool to remove warnings that stem from imprecisions
in our symbolic execution.

4 Checkers. We process the filtered warnings with two
checkers to verify whether requirement R3 holds: the Generic
Checker and the Token Checker. The Generic Checker finds
Cc-Ct pairs where the confused contract Cc has any special
privilege to modify the target contract Ct’s storage. Similarly,
the Token Checker finds target contracts where the confused
contract holds (or held in the past) any balance of digital
assets.

5 / 6 Attack Generation. Finally, JACKAL attempts to
automatically synthesize an exploit for the warnings gener-
ated by the Token Checker, while the ones produced by the
Generic Checker are passed to an analyst to verify whether it
is possible to create an attack.

4.1 Call Inspector

The Call Inspector receives as input the intermediate
registry-based representation of a contract’s EVM bytecode
and its CFG (from Step 1 ). It locates and inspects all
CALL operations and checks whether the contract meets the
requirements R1-2 for a confused contract vulnerability.

We first leverage the results of the constant propagation
from Step 1 (Figure 6) to check whether the tAddr/tFunc
arguments are constants. In such cases, it would be impos-
sible for an attacker to influence their values through the
CALLDATA, hence we discard the CALL instance. Otherwise,
we use symbolic execution to understand if an attacker’s
input can control the argument values.
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Figure 6: JACKAL Overview. The analysis pipeline follows the order of the circled numbers. In 1 - 3 , JACKAL verifies the
requirements R1-2 for a confused contract vulnerability. Components in 4 verify R3 and produce warnings (Cc, Ct, B), where
Cc is the confused contract, Ct is the associated target contract, and B is the reference block identified for a possible attack.
Finally, in 5 / 6 we attempt to craft exploits for the previously observed warnings.

The possible entry points for our analysis are all public
functions of the smart contract for which a static path exists
to the target CALL instruction. To identify such entry points,
we use the previously-generated CFG and callgraph. After
identifying a valid entry point (satisfying R1), we generate
a fully-symbolic byte string of 1,024 bytes and set it as the
input argument of the corresponding function. Note that the
generated symbolic byte string models the CALLDATA that
an attacker would send to the smart contract in a transaction.

At this point, we begin the symbolic exploration of the
smart contract’s code from the selected entry point.

4.1.1 Symbolic Exploration

The goal of the symbolic execution analysis is to determine
whether an attacker can control the values of tAddr and
tFunc for one of the CALL instructions (this is R2). To this
end, we designed a symbolic execution engine augmented
with a set of features that allow us to fine-tune the code ex-
ploration, aiming at a sweet spot between generality (finding
as many confused contracts as possible) and performance
(avoiding path explosion). Our engine employs a state-of-
the-art, fully symbolic memory model [63] with an extension
proposed by Falke et al. [25]. In the following, we introduce a
few important features (F) of our symbolic execution engine.
(F1) Directed Exploration. We employ directed symbolic
execution [49] toward previously-identified target CALL
instructions, using the inter-procedural CFG provided by 1 .
In particular, during the symbolic exploration, we use static
information from the CFG to prune all paths that do not lead
to the target CALL opcode.

(F2) Partially Concrete Storage. The execution of a smart
contract’s code does not happen in a vacuum. That is, in
addition to the input provided in the transaction (as discussed
in Section 2.4), the execution also depends on the state of
the blockchain.

We extend our symbolic storage model with partially
concrete storage support. This means that when the program
reads from storage at a concrete index, we fetch the
corresponding concrete value(s) from the blockchain at a
certain (fixed) block number1. Such a storage model allows
us to proactively discard states that are not reachable given
the on-chain storage values.
(F3) Partially Concrete Execution Context. This feature
is related to the previous one (F2). Specifically, we keep
the input to a function (its CALLDATA) symbolic. However,
our execution engine allows for the partial concretization
of the execution context (in addition to the storage). That
is, we set the msg.sender and the tx.origin to a concrete
address value that we control. Again, this allows us to discard
symbolic states that are not reachable given the on-chain state.
(F4) Precise Handling of SHA3. The SHA3 hash function is
frequently used in smart contracts. For example, the tFunc
argument of a CALL can be computed by taking the SHA3 of
a string (the function name), and keeping the first 4 bytes of
its result (as discussed in Section 2.4). In fact, SHA3 is used
so frequently that the EVM includes a dedicated opcode [77].
Unfortunately, the precise handling of the SHA3 opcode poses
a non-trivial challenge for symbolic execution. Given an
offset in memory and a size S, the SHA3 opcode calculates

1To facilitate reproducibility, we fix an arbitrary reference block number
16380000. We discuss this choice in Section 6.
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the KECCAK256 hash of the S bytes starting at the target
offset. This cryptographic operation cannot be symbolically
analyzed [14]. For this reason, different strategies were
proposed to address this challenge [6, 28, 39, 47, 57]. In our
symbolic execution engine, we use the approach proposed
by Frank et al. [28]. Whenever we obtain solutions for the
CALLDATA input, we also attempt to get solutions for the
SHA3 operations observed during the symbolic execution. We
do this by first concretizing the size S and the corresponding
input buffer at the target offset and then calculating the value
of the KECCAK256 operation, which is assigned to the result
variable of the SHA3 opcode.

4.1.2 Constraint Solving

When our symbolic execution engine reaches the target
CALL operation, we inspect the symbolic state at this point.
Specifically, we extract the path constraints and query our
underlying solver, Yices2 [16], to obtain a concrete solution
(concrete values) for the symbolic CALLDATA, as well as for
the tAddr and tFunc arguments.

If the solver is not able to find a solution, this means
that we cannot provide an input (CALLDATA) that reaches
the CALL. On the other hand, if the solver can determine
a solution, we have found an input that reaches the CALL,
together with concrete values for the CALL’s arguments.

To understand if the argument values of tAddr and tFunc
directly depend on the CALLDATA, and hence, are under the
attacker’s control, we employ a strategy based on finding
path-preserving CALLDATA modifications. To this end,
we first check whether the tAddr/tFunc arguments can be
influenced by any symbolic values that do not come from
CALLDATA. Such values can be return values from external
contract calls (that are not modeled) or storage reads with
a symbolic index. To identify these cases, we force the solver
to fix the initial concrete solution for CALLDATA while gen-
erating a different solution for tAddr and tFunc. If the solver
can change the values of tAddr and tFunc without changing
CALLDATA, we assume that something else along the path
influences such arguments. Otherwise, we assume that the
values of tAddr and tFunc only depend on the CALLDATA.

However, it is not enough to prove that the tAddr and
tFunc arguments depend on the CALLDATA. In addition,
we also require that the attacker has some freedom over
the actual values of the arguments. To check this, we query
the solver for a new and different solution for the symbolic
variables in CALLDATA, tAddr, and tFunc. If the solver can
find a satisfying assignment, we conclude that there is a way
for an attacker to influence the values of tAddr and tFunc via
bytes in the CALLDATA. This indicates that R2 is satisfied.

The astute reader will observe that we only checked
for two different solutions. In theory, this is a very narrow
definition of “sufficient freedom” over all possible argument
values. However, we find that, in practice, most contracts

either enforce one specific value or provide complete freedom
for the attacker. Hence, checking for two solutions serves as
a good proxy for complete freedom.

4.2 Path Feasibility Validator
Our symbolic execution does not follow calls to external
functions (in other contracts), and we use partially concrete
storage and execution context. Hence, in some cases, JACKAL
reports that an attacker can reach and control a target
CALL instruction when this is not possible. This can occur
when, for instance, the confused contract’s code invokes an
external contract to sanitize the value of the msg.sender
before reaching the target CALL. That is, the value of the
msg.sender is sent to an external “governance contract” that
checks if the account is allowed to operate on the confused
contract. Of course, if the contract included the check directly,
we would properly detect this case.

To filter out false positives, such as the “governance
contract” cases above, we leverage an implementation of
the EVM [24] to execute the confused contract’s bytecode,
supplying the concrete CALLDATA value generated by the
Call Inspector (Figure 6, 2 ) as input. In particular, the
validator provides a complete execution environment to
the contract, simulating its execution on the blockchain
and accounting for checks performed outside of its code.
If this step is successful, we have strong evidence that the
synthesized CALLDATA allows us to reach the target CALL
instruction. We provide a more complete discussion of
potential false negatives and false positives in Section 5.

4.3 Checkers
At this point, we have identified a confused contract that
allows an attacker to control the arguments of a CALL invoking
an external function. While this may already be of concern,
one more factor is still required for a successful attack. Such
a factor is a second (target) contract that holds some privilege
(e.g., access, assets) on behalf of the confused contract—a
requirement that is captured by R3. To this end, we apply
two analyses: a Generic Checker and a Token Checker.
Generic Checker. The purpose of this checker is to identify
cases where a target contract has allocated some state on
behalf of the confused contract.

Finding such target contracts Ct on the blockchain is not a
trivial task. In fact, one would potentially have to analyze all
existing contracts (∼54 million contracts at the time of writ-
ing) to determine whether they have any relationship with a
given confused contract Cc. To simplify this process and make
it scale, we narrow our search to only those contracts that had
any prior interactions with Cc. More precisely, we scan the
blockchain history and extract all the addresses of contracts
Ct that were the target of an internal transaction (iTx) coming
from a given Cc. We believe that this makes intuitive sense:
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If a certain target contract allocates state on behalf of another
source contract (or user account), such source contract (or
user) will likely have invoked the target contract.

The Generic Checker first replays each historic transaction
iTx – which was sent by the confused contract – in a locally
simulated blockchain environment and collects an execution
trace. Then, it replays the transaction again, but this time, we
change the msg.sender of the iTx to an arbitrary address.
If we detect any differences between the two executions in
terms of writes to persistent storage, we raise a warning.
Token Checker. The goal of the Token Checker is to
determine whether the confused contract holds some tokens
(cryptocurrency) that an attacker might be able to steal. In
contrast to the Generic Checker, the Token Checker can detect
relationships between a confused contract Cc and a target
contract Ct even if they never interacted. This is because we
can limit our analysis to target contracts with certain types of
digital assets. To make this analysis scale, we limit the anal-
ysis to token contracts based on the ERC-20 and ERC-721
standards [52, 53]. These standards define interfaces used by
developers to write smart contracts that implement custom
digital assets living on the blockchain (e.g., cryptocurrency
tokens, NFTs). The goal of the Token Checker is to understand
if a confused contract Cc currently holds (or held in the past)
any digital assets. When this is true, we raise a warning.

A straightforward way to identify the number of tokens
owned by a confused contract Cc is to call the standardized
method balanceOf available in ERC-20/ERC-721-based
contracts. However, this approach would be very inefficient.
In fact, one would have to call the balanceOf methods of all
possible token contracts Ct, for every possible block. Instead,
we collect the balance information using the transfer event
logs, a standardized log event emitted on the blockchain
whenever an ERC-20/ERC-721 token is transferred to, or
from, a contract. Summaries of such log events allow us
to determine the number of tokens that were owned by a
confused contract at any point in time.

Ultimately, both our checkers produce as output a tuple
(Cc, Ct, B), reporting that there exists a confused contract Cc
associated with a possible target Ct that might be exploitable
at block B.

4.4 Attack Generation
At this step, JACKAL attempts to craft an exploit for the
warnings raised by our checkers (Section 4.3).
Token Checker Exploits. We automate the exploit synthesis
for the warnings generated by the Token Checker. Given a
warning (Cc, Ct, B), to exploit Cc and transfer all the tokens
owned in Ct to an attacker-controlled account (A), the attacker
needs to find a CALLDATA input for Cc such that (1) the
“open” CALL within the code of Cc executes the standardized
transfer function [52] of Ct (the Token Contract [52, 53])
with the right arguments (i.e., from,to,value), and (2), the

execution of Cc successfully terminates after returning from
the call to Ct.

To generate the required CALLDATA, JACKAL leverages
symbolic execution as discussed in Section 4.1.1, using
block B as a reference block for our partial concrete storage
(F2). In particular, JACKAL first uses directed symbolic
execution (F1) to reach the CALL, adding extra constraints
to the execution to properly set the arguments of the
CALL: tAddr=Ct, tFunc=0xa9059cbb (the function id of
transfer). Finally, the rest of the data sent to Ct should
include the encoded arguments for transfer (the tFunc)
such that: from=Cc, to=A, and value=0x1.

Then, JACKAL leverages the CFG of Cc to identify a
reachable STOP/RETURN [77] instruction and resume directed
symbolic execution in order to reach it.

Finally, JACKAL solves the path constraints and obtains the
desired value for CALLDATA, which allows for the automatic
synthesis of the exploit.
Generic Checker Exploits. Crafting an exploit for the
warnings generated by the Generic Checker is currently
a semi-automatic effort. In particular, we apply the same
methodology as described for the Token Checker warnings,
but in this case, we need to manually understand which
arguments we need to provide to the target function (tFunc)
to avoid an early failure (revert) during the execution of Ct.
We further discuss this issue in Section 6.

5 Evaluation

For all our experiments, we use three servers equipped with
300Gb of RAM and dual Intel(R) Xeon(R) Gold 6330 CPUs.
We use GNU Parallel [65] to parallelize our tasks.
Dataset Information. We extracted all smart contract ad-
dresses created in the 24-month period from December 2020
to December 20222. This accounts for a total of 2,335,193
smart contracts. When trying to obtain their bytecode, we
observed that 86,525 contracts (∼3.84%) self-destructed
in the same block when they were created. Thus, we were
left with a total of 2,248,668 smart contract binaries. Within
our dataset, we identified 307,957 (∼13.69%) contracts with
unique SHA256 hashes of their respective bytecode.

To motivate our decision to perform binary-only analysis
(instead of relying on source code), we collected information
regarding the availability of source code for the contracts
in our dataset. We observe that when considering only
unique values for the contracts’ bytecode, source code is not
available for 35.8% of them. Interestingly, when looking at all
contracts (without discarding duplicates), the percentage of
contracts with no source code increases to 48.4%. In Figure 7,
we show the availability of source code as it relates to the size
of the contracts’ bytecode. This data suggest that the fraction
of contracts without source code decreases as the contracts

2Corresponding to blocks in the range 11363270–16086235.
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Has Source No Source
Unique Total Unique Total

Small Size (<5Kb) 58,869 1,113,287 54,933 912,392
Large Size (≥5Kb) 138,765 159,070 55,390 63,919

Table 1: Source code availability for smart contracts in our
dataset considering unique and non-unique code.

grow larger. Nevertheless, even with large dApps, source
code is frequently not available, which supports our decision
to implement binary-only program analysis techniques. In
Table 1, we show a summary of source code availability with
a split at 5Kb for the size of contracts’ bytecode’s.
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Figure 7: Correlation between bytecode size and availability
of source code for non-unique contracts.
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Figure 8: Distribution of the number of CALL opcodes for
unique and non-unique contracts in our dataset.

5.1 Confused Contracts

Static Analysis. We obtained CFG reconstruction and static
analysis results by running Gigahorse [31] on all the contracts
with a timeout of 30 minutes and a memory limit of 50 Gb.
After this analysis, we discarded 17,996 (0.77%) contracts
for which Gigahorse failed to provide results and remove
an additional 1,538,365 (65%) smart contracts that do not
contain any CALL opcode. As illustrated by Figure 8, many
of the remaining contracts include only a relatively small
number of CALL instructions, but with some outliers that
contain a considerable amount. We advance to the next
analysis step a total of 692,307 smart contracts.
Call Inspector. We ran our Call Inspector analysis (discussed
in Section 4.1) on all 692,307 contracts. Given a contract,
we identify all its CALL opcodes and discard the ones for
which Gigahorse reported that at least one of the tAddr or
tFunc arguments is constant. For the remaining calls, we
performed symbolic execution using a timeout of 30 minutes.
As we discuss in Section 4.1.1 (F2&F3), our analysis extracts
concrete values from the persistent storage whenever we
access it with a fully concrete index. Since concrete persistent
storage values can be different for contracts even when their
bytecode is identical, for this analysis stage we must consider
non-unique contracts.
Results Discussion. The (symbolic execution) analysis of all
contracts took approximately 54 hours, and it processed a to-
tal of 780,836 CALL(s)3. As illustrated in Figure 9, most of the
CALLs were analyzed in less than a minute, while our engine
encountered a timeout for 29,400 CALL instances (3.77%).
JACKAL flagged 416,163 CALLs (53.3%) as unreachable dur-
ing symbolic execution (e.g., there are checks on msg.sender
preventing arbitrary accounts from reaching the call), 333,633
CALLs (42.73%) reachable with non-controllable arguments
of the CALL, and, finally, 1,640 (0.21%) reachable CALL op-
codes with controllable tAddr and tFunc. Every such CALL
belongs to a unique contract that can potentially be vulnerable
to a confused contract attack. To identify potential misclassi-
fication of controllable CALL opcodes as non-controllable, we
randomly sample 20 CALLs in distinct contracts and manually
verify whether they are indeed non-controllable. For all
samples, we confirm the results of our analysis.

In the next step, we used the Path Feasibility Validator on
the 1,640 contracts with “open” CALL (confused contracts).
This step took on average 1.71 seconds per contract and re-
duced the number to 529 confused contracts for which we can
replay inputs that reach the CALL instruction. As discussed in
Section 4.2, our validation checks the reachability of a target
CALL opcode, but it does not consider whether a transaction
successfully terminates – without reverting – after returning
from the call. Hence, false positives are still possible, e.g.,
the msg.sender might be checked after the call.

3A contract can contain multiple CALL opcodes.
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Figure 9: Distribution of the analysis time spent by symbolic
execution to mark a CALL as controllable or non-controllable.

5.2 Checkers
In the final step, we applied our two checkers (as described
in Section 4.3) to the 529 (potentially) confused contracts.
Generic Checker. The Generic Checker identified 32
contracts with at least one historic interaction on the
blockchain in which differences in persistent storage writes
were observed when changing the msg.sender. Specifically,
we detected some potentially-sensitive persistent storage
writes which could be performed by the confused contract
but not by an arbitrary contract.
Token Checker. The Token Checker reported that 52 con-
tracts held a certain amount of cryptocurrency tokens (ERC20
or ERC721 contracts) for at least one block. In this scenario,
a successful exploitation of a confused contract attack can,
or could have, directly caused the transfer of digital assets
from the confused contract to the attacker’s account.

Note that there is no overlapping between the warnings
generated by the two checkers. In fact, we excluded all the
known token contracts (i.e., ERC20/ERC721 contracts) from
the scope of the Generic Checker before running it.

5.3 Confused Contract Exploitation
In Section 5.2, we reported that JACKAL found 84 confused
contracts and associated target contracts. However, even
if our tool successfully reported conditions for confused
contract attacks, one important question remains: is it possible
in practice to generate an exploit? To answer this question,
we attempt to generate end-to-end exploits for the warnings
generated by our checkers. One peculiarity of smart contracts’
exploitation is that once the effects of the exploit are observed,
i.e., modifications to the persistent storage, they will be com-
mitted only if the continuation of the execution terminates
successfully (i.e., it does not revert). Hence, even if it is some-

times possible to obtain favorable conditions for an exploit to
produce its effects, it might not be feasible to reach the end of
the execution without reverting its changes, which prevents
any possible harm. Therefore, we confirmed all exploits
created at this step by executing them in a local version of a
real blockchain environment [24], using as a reference block
the one reported by our checkers in their warnings (i.e., a
block in which a confused contract has a valid target contract).
Generic Checker Warnings. After looking into the 32 warn-
ings for confused contracts generated by the Generic Checker,
we found that one of them interacted in the past with the Sea-
port [45] smart contract: an ERC-721 token marketplace. Af-
ter a brief manual review (∼5 minutes) of the Seaport contract
and its functions, we were able to craft an exploit leveraging
the same automatic approach used for the Token Checker
Exploits (see Section 4.4), that forces the confused contract
to increment an order counter (associated with the confused
contract) in the persistent storage of the Seaport contract. It
seems that this could lead to security issues. Specifically, in
Figure 10, we show a snippet from the Seaport contract, where
a developer left a comment stating that the order increment
operation is sensitive and restricted to offerers, as it leads to
a cancellation of their orders. Note that the vulnerability is
not to be attributed to the Seaport Marketplace, but, rather,
to the confused contract with controllable CALL’s arguments.

1 /* Cancel all orders from a given
2 * offerer with a given zone in bulk
3 * by incrementing a counter.
4 * Note that only

the offerer may increment the counter. */
5 function incrementCounter

() external returns (uint256 newCounter);

Figure 10: The incrementCounter function in Seaport.
The developers explicitly noted that only an offerer may
increment the counter. A confused contract can be forced by
any unprivileged user to violate this requirement.

For the remaining instances in this category, we could
not create exploits that would cause any harm. In 28 cases,
the confused contract did check the msg.sender after the
controllable CALL instruction but before terminating its
execution (and, thus, the contract reverts). In 2 other cases,
we could not fully control the target CALL instruction because
of the additional checks on the CALL arguments that were
not captured during our symbolic analysis. For example, in
some cases, only specific solutions were allowed to be used
as the tAddr in the confused contract call, preventing us
from calling the identified target contracts and their functions.
Finally, we found one case where the attacker can control
the CALL, but we could not find any security-relevant writes
to persistent storage in the target contracts. However, in
this case, the confused contract is vulnerable and could be
exploited in the future. The manual triaging of these 32

1804    32nd USENIX Security Symposium USENIX Association



warnings took on average 10 minutes per instance.
Token Checker Warnings. The Token Checker identified 52
confused contracts. Our automatic exploit generation analysis
was able to synthesize 30 working exploits. For each warning,
this process took on average less than 45 minutes. The
obtained exploits demonstrate the possibility of transferring
the assets owned by a confused contract (for a specific token)
to an account of an attacker’s choice. That is, all our exploits
work by manipulating the input of the confused contract’s
public function so that, in the arguments of the “open” CALL,
the target address tAddr is the address of a token contract
and the target function tFunc is the transfer function of
the contract [52], which sends the assets of the confused
contract to the attacker-specified address.

In Table 2, we show the results of our findings considering
confused contracts that held a value greater than $100. Note
that we report the maximum values of US dollars associated
with the tokens held by a confused contract, but we detected
many other exploitation opportunities for smaller values and
different time windows. Moreover, the identified exploits also
allow the attacker to compromise any assets the confused
contracts could have in the future.

Regarding the 22 warnings for which we could not
generate an exploit, 3 of them managed a total value of
approximately a million dollars. However, we were unable at
the time of writing to create successful attacks due to the high
complexity of their logic. For 19 of them, we were unable
to set the tFunc to the right contract target.

# Token Block Span Val

1 DAI [15] 14104828 146 $838,436
2 DAI [15] 11469710 476 $190,090
3 BAS [3] 11454250 2 $12,610
4 Hegic [35] 11492550 42 $10,007
5 wETH [75] 13574103 12,199 $2,404
6 wETH [75] 15625577 14,867 $1,438
7 wETH [75] 15645205 651 $1,405
8 wBTC [74] 15200611 1 $993
9 LooksRare [44] 14634155 1,927,641 $883

10 LUSD [46] 15451410 62 $391
11 wETH [75] 15596427 1146 $261
12 wETH [75] 14170312 19,396 $133

Total $1,058,961

Table 2: Summary of the discovered exploits for the confused
contract attacks. Token represents the token held by the
contract starting from the block in Block. Span represents the
length of time (in blocks) during which the confused contract
was exploitable (a new block is mined approximately every
12 seconds). Val is an estimate in USD dollars of the value
of the tokens at the specific Block in which the opportunity
first appeared. We fetched the historical price per token using
the Uniswap [69] contract.

Ethical Considerations. As some of our exploits can
still compromise assets on the blockchain, we took some
precautions. First, when developing our exploits, we never
execute them in any public blockchain. Rather, all the exploits
were tested in a local environment that models the real one.
Second, when reporting our results in Table 2, we redacted
the confused contracts’ addresses. In the spirit of responsible
disclosure, we attempted to contact the entities behind
exploitable confused contracts—whenever possible—and
are currently awaiting acknowledgment. However, as the
individuals behind a smart contract are often unknown, it
is not always practical to report a vulnerability. Finally,
we notified the Cybersecurity and Infrastructure Security
Agency (CISA) [11] regarding the high-impact vulnerabilities
identified by JACKAL (Table 2).

5.4 Comparison with Existing Systems
We compare JACKAL with two state-of-the-art bytecode-only
symbolic executors for smart contracts: Mythril (Github
commit: d531d8b) [13] and ETHBMC (Github commit:
e887f33) [28]. For this evaluation, we took all the 379,175
contracts that include a potentially vulnerable CALL.
Mythril. Mythril includes a security analysis that detects
publicly reachable CALLs. However, their definition of
controllable CALL is broader than our R2. In fact, Mythril
simply raises an alert when the tAddr of a CALL can be
controlled by an attacker, saying nothing about tFunc. In
total, Mythril flagged 33,182 CALLs (in 26,161 different
contracts) as controllable. We investigated a random sample
of 100 warnings and discover that 96 of them are false
positives (given our threat model). That is, they are CALLs
whose tFunc is not controllable by an attacker. Only 4
warnings are related to fully controllable CALLs (i.e., both
tAddr and tFunc are controllable). Of these, 3 of them
have also been identified by JACKAL, while one is a false
negative of our system. In particular, this false negative is
a consequence of selecting one single entry point for our
symbolic execution as discussed in Section 6.

Finally, Mythril identified controllable CALLs in only 445
of the 529 (84.12%) contracts identified by JACKAL. These
are false negatives of Mythril’s analysis.
ETHBMC. ETHBMC includes a security analysis that raises
an alert when it finds a CALL with attacker-controllable tAddr
and value (see StealMoney threat model [28]). Note that
this captures only a subset of controllable CALLs that satisfy
our R2. Thus, for a more complete and fair comparison, we
evaluated ETHBMC’s analysis under two strategies: (1) we
log all the CALLs with controllable tAddr as soon as the tool
observes them, and (2) by analyzing the final reports. When
considering (1), we gather a total of 14,159 warnings for
controllable CALLs (in 7,603 different contracts). We sampled
100 of these warnings and found 13 CALLs that are fully
controllable (R2). JACKAL missed 5 of these CALLs (and
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found the other 8). Again, we found that the root cause for our
false negatives is related to the limitation of selecting a single
entry point (see Section 6) for our symbolic execution. The
remaining 87 CALLs are false positives: 43 are STATICCALL
with controllable tAddr (that are not part of our threat model),
34 are CALLs with tFunc arguments that cannot be controlled,
and 10 are unreachable CALLs, i.e., there are checks on the
msg.sender address before reaching the CALL.

When just considering the final reports, ETHBMC reported
a total of 196 warnings for controllable CALLs (in 128 dif-
ferent contracts). Notably, this new set of warnings contains
only 8 of the 529 confused contracts flagged by JACKAL.

Overall, considering both evaluation strategies, ETHBMC
identified only 337 (63.7%) of the 529 confused contracts
flagged by JACKAL after step 3 .

Our evaluation shows that while both tools are able to
identify public reachable, and, to some extent, controllable
CALLs, none of the warnings generated by the tools pro-
vide additional insights regarding existing target contract
associated with a contract with a controllable CALL (R3).

In closing, we would like to emphasize that the purpose
of this evaluation is not to demonstrate the superiority of
our symbolic execution engine. Instead, we want to show
that existing tools do not directly detect confused contract
vulnerabilities. One would have to implement additional
analysis steps and filters to address the high number of false
positives and false negatives. Of course, these modifications
could have been implemented on top of either Mythril or
ETHBMC. However, for this work, we decided to build our
analysis on top of Gigahorse, given its high-quality results
in CFG reconstruction and contract decompilation [31].

6 Discussion and Limitations

Directed Exploration. The correctness of our directed
exploration—discussed in Section 4.1.1 (F1)—relies on the
precision of the underlying state-of-the-art CFG reconstruc-
tion framework [31]. While it is true that imprecision in the
CFG analysis would lead to both false positives/negatives,
in our results we did not observe such a problem in practice.
EntryPoint Selection. While multiple entry points for each
target CALL can exist, our symbolic analysis selects only one.
JACKAL could be extended to take into account more possible
paths, which might yield additional confused contracts.
However, in practice, we found that many contracts only have
a few relevant entry points for each CALL.
Reference Block Choice. As described in Section 4.1.1
(F2), we use an arbitrary reference block number 16380000
throughout our analyses for the identification of R1 and
R2. While running our analyses on each block would be
ideal, it may be impractical. Moreover, the benefits of fixing
an arbitrary reference block are twofold. First, this allows
for the reproducibility of our results. Second, choosing a

recent block allows us to check whether the vulnerability is
currently exploitable.
Constraint Analysis. Our path-preserving-transformation
heuristic (Section 4.1.2) marks tAddr and tFunc as con-
trollable even if the attacker cannot manipulate their values
arbitrarily. Instead, our heuristic is used to provide evidence
of a connection between values in CALLDATA supplied by
the attacker and the values of the CALL arguments, which
corresponds to our attacker model described in Section 3.2.
Checker Warnings. Our checkers produced a total of 84
warnings for possible confused contracts. However, this
number can be increased by allowing JACKAL to further
explore the attack surface of confused contract vulnerability
via additional or extended checkers.
Attack Generation. Our system is able, under certain circum-
stances, to automatically generate an exploit for the warnings
raised by the Token Checker. However, the complexity of a
contract’s logic can sometimes hinder this process (e.g., the
path constraints collected during symbolic execution are too
hard to solve). In these cases, finding the right CALLDATA
input to trigger a confused contract attack can be highly
time-consuming, thus, we cannot confirm the exploitability.

Currently, the warnings generated by the Generic Checker
require manual work to identify the right arguments to
supply to the tFunc in a target contract. While this process
could be automated, we decided to leave it as a future work
considering the low complexity of the warnings raised by this
checker during our Evaluation (Section 5).

7 Related Work

7.1 Confused Deputy Vulnerabilities

Since its introduction by Norm Hardy [33], the concept
of confused deputy vulnerability has been driving many
research efforts. For instance, this concept has been leveraged
in research efforts looking at privilege escalation attacks in
Android and AppleOS [73, 78]. To the best of our knowledge,
our work is the first to apply the confused deputy bug class
to model attacks on smart contracts.

7.2 Smart Contract Analysis

Static Analysis. Grech et al. proposed Gigahorse [31], a static
analysis framework that translates the stack-based bytecode
of a smart contract into a register-based intermediate represen-
tation that can be used for decompilation. Gigahorse provides
precise CFG reconstruction and numerous out-of-the-box
data-flow analyses that have been used to build effective bug-
hunting systems in the past [5, 30, 40, 64]. A similar approach
has been proposed by Fesit et al. with Slither [26], a static
analysis framework that targets Solidity [1] source code and
supports the detection of a multitude of different bug classes.
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Tikhomirov et al. proposed SmartCheck [67], a system that
translates Solidity source code into an XML representation
and identifies bugs with the help of xPath patterns. Tsankov
et al. proposed Securify [68], a framework that leverages
a smart contract’s dependency graph to identify patterns
of vulnerabilities. Finally, SmartDagger [41] and Clairvoy-
ance [80] are static analysis systems that focus on discovering
traditional vulnerabilities (e.g., reentrancy, timestamp
manipulation, and DoS) afflicting inter-contract interactions.
Symbolic Execution & Bounded Model Checking. The
first effort in this area has been proposed by Luu et al. with
Oyente [47], followed by Krupp et al. [39] with teEther. In
particular, Oyente aimed at finding bugs such as reentrancy
and transaction-ordering dependence. teEther targeted a
similar class of bugs, but its symbolic execution engine
is equipped with an automatic exploit generation system.
In addition, industry solutions such as Mytrhil [13] and
Manticore [50] have been proposed and became the de-facto
standard tools in the arsenal of professional smart contracts
auditors. Ma et al. proposed Pluto [48], a system that first
reconstructs the inter-contract CFG of smart contracts that
interact with each other. Pluto then leverages a symbolic
analysis that explores the CFG to identify different kinds
of classic bugs, e.g., reentrancy, and arithmetic issues. In a
similar vein, Frank et al. proposed ETHBMC [28], a bounded
model checker that supports the symbolic execution of a smart
contract bytecode even when external interactions are present.
Finally, Bose et al. proposed Sailfish [4], a symbolic execution
system for automatically finding state-inconsistency bugs.
Fuzzing. Many systems based on fuzzing techniques have
been developed through the years. Some of them require
Solidity source code: Echidna [32], ContraMaster [71, 72],
Foundry [27], fuzzing-like-a-degen [2], ChainFuzz [8], EX-
GEN [38], and xFuzz [81]. Others can work solely with a con-
tract’s bytecode: Harvey [79], ContractFuzzer [37], ILF [34],
Reguard [42], sFuzz [51], Smartian [10] and EF�CF [61].

While JACKAL leverages ideas from prior static analysis
and symbolic execution systems (that inspect individual
contracts), our goal is different. First, we aim to precisely
describe confused contract vulnerabilities, a new blockchain
bug class that revisits the classic confused deputy vulnera-
bility [33], but in the context of interactions between smart
contracts. Second, we propose an approach that relies on
different program analysis techniques to detect such flaws
and show that they can be practically exploited (leading to
considerable impact on the overall blockchain ecosystem).

8 Conclusions

In this paper, we introduced the confused contract vulner-
ability class, a variant of the traditional confused deputy
bug applied in the context of smart contracts running on the
blockchain. In particular, we show how contracts that contain

controllable invocations of other contracts’ functions (i.e.,
confused contracts) can be exploited by unprivileged users
to perform unwanted actions on their behalf, e.g., financial
asset transfers from the confused contract to an attacker.

To identify confused contract attack opportunities in the
wild, we developed JACKAL, a system that we used to analyze
2,335,193 million smart contracts created on the Ethereum
blockchain between blocks 11363270 and 16086235. JACKAL
raised a warning for a total of 529 smart contracts, flagging
them as possibly vulnerable to a confused contract attack.

To identify opportunities for confused contract attacks in
the blockchain, we developed two checkers that automatically
identify target contract candidates. Based on these findings,
we were able to develop 31 past and present working exploits
for confused contract attacks in the real world, revealing
the potential of compromising digital assets for more than
a million US dollars. With this work, we wanted to present a
few use cases for exploiting a confused contract vulnerability.
However, we believe that the scale of the problem is
far-reaching and that improved tools are necessary to compre-
hend the intricate relationships present within the numerous
multi-contract interactions occurring daily on the blockchain.
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