
Towards Automatically Generating a Sound and
Complete Dataset for Evaluating Static Analysis

Tools

Aravind Machiry, Nilo Redini, Eric Gustafson, Hojjat Aghakhani,
Christopher Kruegel, and Giovanni Vigna

{machiry, nredini, edg, hojjat, chris, vigna}@cs.ucsb.edu
University of California, Santa Barbara

Abstract—Binary static analysis has seen a recent surge in
interest, due to a rise in analysis targets for which no other
method is appropriate, such as, embedded firmware. This has led
to the proposal of a number of binary static analysis tools and
techniques, handling various kinds of programs, and answering
different research questions. While static analyis tools that focus
on binaries inherit the undecidability of static analysis, they
bring with them other challenges, particularly in dealing with the
aliasing of code and data pointers. These tools may tackle these
challenges in different ways, but unfortunately, there is currently
no concrete means of comparing their effectiveness at solving
these central, problem-independent aspects of static analysis.

In this paper, we propose a new method for creating a dataset
of real-world programs, paired with the ground truth for static
analysis. Our approach involves the injection of synthetic “facts”
into a set of open-source programs, consisting of new variables
and their possible values. The analyses’ goal is then to evaluate
the possible values of these facts at certain program points. As
the facts are injected randomly within an arbitrarily-large set
of programs, the kinds of data flows that can be measured are
widely-varied in size and complexity. We implemented this idea
as a prototype system, AUTOFACTS, and used it to create a
ground truth dataset of 29 programs, with various types and
number of facts, resulting in a total of 2,088 binaries (with 72
versions for each program). To our knowledge, this is the first
dataset aimed at the problem-independent evaluation of static
analysis tools, and we contribute all code and the dataset itself
to the community as open-source.

I. INTRODUCTION

The static analysis of programs has been studied at length
throughout computing’s history. While many of these ad-
vances focus on the analysis of source code or other high-
level abstractions, recent work has focused on the analysis
of compiled binary programs [42], [47], [51]. This could be
mainly attributed to the explosion in the number of Internet of
Things (IoT) devices or in general embedded devices, where,
most often, only the binary firmware is available [2].

Static analysis is often preferred [46] for analyzing these
firmware binaries. Although, dynamic analysis tools exist,

they either need real devices [56] or considerable engineering
effort [12], [14], [15], [17].

Binary static analysis tools need to handle several chal-
lenges introduced by the underlying architecture. A sound
static analysis technique for binaries might suffer from low
precision, as it has to solve various challenges to handle
pointers [7], [20], type inference [10], etc. Current tools and
techniques provide a best-effort static analysis [19], [23], [31],
[41], [47] using reasonable heuristics [16], [25], [30], [55],
which compromise soundness for precision. The effectiveness
of these heuristics is highly dependent on the dataset and its
architecture [3], [8]. Furthermore, ground truth on the analysis
results is not always available for binaries. This makes the
fair comparison of different binary static analysis techniques
a challenging problem.

However, there is currently no general benchmark or mea-
surement methodology to assess and compare the core analysis
performance of these approaches. Central to this is the need
for ground truth; we need a sound and complete set of known
facts, such as possible values for a variable at a given program
point, or the set of aliases a pointer can have at a given
time. However, we cannot merely generate these from existing
source code, while also being sound and complete, as this is,
again, undecidable.

In this paper, we propose a new methodology for measuring
the performance of binary static analysis tools. This approach
is based around the automated injection of synthetic facts–a
set of possible variable definitions–into a target program. When
analyzing these test programs, the analysis frameworks will be
forced to evaluate the possible content of these facts at various
points in the program, and the results can be compared with
ground-truth. By injecting our facts into existing programs, we
side-step the need for complete ground-truth from the original
program, and also create a very realistic dataset. The logic
of the program itself is intact and unaltered, and the analysis
systems have to deal with various degrees of complexity
inherent to the program.

We implemented these ideas into a prototype, called AUT-
OFACTS, on top of the LLVM framework [33], which can
be used to generate datasets for any source code, and for any
target architecture supported by LLVM. We demonstrate AUT-
OFACTS on 29 programs by injecting various types of facts
resulting in a total of 2,088 binaries, and discuss its effective-
ness at making a diverse, challenging dataset for the evaluation

Workshop on Binary Analysis Research (BAR) 2019
24 February 2019, San Diego, CA, USA
ISBN 1-891562-58-4
https://dx.doi.org/10.14722/bar.2019.23090
www.ndss-symposium.org

of static analysis tools.

In summary, our contributions are as follows:

• We propose a new method of evaluating static analysis
tools, by creating ground-truth using known “facts”
injected into programs.

• We present AUTOFACTS, a prototype implementing
these ideas. AUTOFACTS can transform the source
code of programs to add facts in an automated fashion.

• We create a dataset of 2,088 binaries with 29 programs
using the code of popular open-source programs, along
with the ground truth data for various data and func-
tions pointers, and contribute this to the community 1.

II. BACKGROUND AND MOTIVATION

Static analysis, as applied to compiled binary programs,
takes on a different set of challenges from those of source
code or high-level bytecode. This is due, in part, to the loss of
information in the compiled binary. For instance, information
regarding program variables [6] and their types [35], as well as
memory aliasing [5], [24] are removed during the compilation
process.

Static Data Flow Analysis or Data Flow Analysis
(DFA) [38] is one of the common forms of static analysis
used for various security applications. Most of the DFA-based
techniques depend on the availability of accurate points-to
information and a complete Control-Flow Graph (CFG) [1]
of the program.

Points-to analysis is a known hard problem, and it has
been the subject of research for multiple decades. Although
recovering the CFG is relatively easy for source-code-based
analysis, binary analysis techniques still struggle to produce
an accurate CFG in the presence of indirect jumps or function
calls [20], [31], [51]. Most of the existing techniques are based
on heuristics [3], [16]. Although some techniques perform
relatively well compared to others, the lack of proper sound
and complete ground truth hinders an accurate evaluation of
these approaches.

A relatively easy way to generate good ground truth is
to use source-code-based analysis. One could use existing
source-code-based techniques to produce a sound result [4],
[57]. However, binary analysis techniques tend to compromise
soundness for precision [47]. Furthermore, as the source code-
based techniques cannot be sound and complete, it is possible
that a binary analysis technique could produce results on
a binary that are more precise than a source-based-analysis
on the corresponding sources. This makes the comparison
against source code-based ground truth a trickier problem. For
instance, if a binary analysis technique misses a target for an
indirect call, it is hard to say whether it is correct (because
the binary analysis is more precise) or wrong (it legitimately
missed a possible target).

What we need is a technique to generate a sound and
complete dataset, so that we can accurately evaluate the
effectiveness of static binary analysis techniques.

1github.com/ucsb-seclab/autofacts

III. RELATED WORK

To the best of our knowledge, AUTOFACTS is the first
dataset released for evaluating the static analysis techniques
being used in binary analysis tools, independent of the ultimate
goal for which these tools are being used. In this section, we
briefly survey works have been done in the related area, though
with a different focus than our work.

Evaluating bug detection tools. Wilander et al. implemented a
testbed of 44 function calls in C to investigate the effectiveness
of five publicly available static bug detection tools [52]. One
year later, they created 20 different buffer overflow attacks
to evaluate four publicly available tools for dynamic buffer
overflow detection [53]. Zitser et al. [59] manually assembled
a ground truth corpus of source code examples containing 14
exploitable buffer overflow vulnerabilities found in three open-
source software to evaluate five static buffer overflow detectors.
Zhivich et al. [58] later used the same 14 vulnerabilities to
compare a few dynamic buffer overflow detection tools. As
a follow-up analysis to the Zitser’s study [59], Kratkiewicz
et al. [32] generated more diagnostic test cases, a corpus of
291 small C programs, to determine specific strengths and
weaknesses of the tools.

Later, a much bigger and more useful public database for
the evaluation of bug detection tools was generated by the
NIST project Software Assurance Metrics And Tool Evaluation
(SAMATE) [29]. The major part of their evaluation corpus is
represented by Juliet [21], a collection of 86,864 synthetic
C and Java programs including 118 different CVEs. More
recently, Shiraishi et al. [45] created 638 variations of the 51
different types of defects that can lead to runtime exceptions
and should be detected by static analysis tools, and they
conducted a quantitative analysis of commercial static analysis
tools by using their test suites. Later, Shoshitaishvili et al. [47]
reproduced many existing approaches in binary vulnerability
analysis using their proposed binary analysis framework, angr,
to compare the effectiveness of binary vulnerability analysis
techniques by evaluating them against a dataset created by
DARPA [40].

Dolan-Gavitt et al. [18] leveraged a taint-analysis-based
technique for producing ground-truth corpora of vulnerable
programs by automatically injecting bugs into the program
source code. Using their technique, they released the LAVA
dataset, which can be used for the evaluation of both static and
dynamic analysis tools. Recently, Bonett et al. [9] proposed a
mutation-based framework that systematically evaluates An-
droid static analysis tools. They first create security operators
that reflect the goals of the tools being analyzed, e.g., buffer
overflow detection. These security operators then are inserted
into Android apps, which results in the creation of multiple
mutant versions of the original app. Ultimately, the static
analysis tools can be evaluated against the injected mutants.
While this is somewhat similar to AUTOFACTS, this work
operates on high-level bytecode, and focuses specifically on
security-related findings.

General evaluation of program analysis techniques. While
related works mainly evaluate the existing program analysis
tools by focusing on the final goal for which these tools
are being used, the research community has started to invest
effort into ensuring the preciseness and reliability of program

2

github.com/ucsb-seclab/autofacts

Fig. 1. Control flow graph (CFG) of a sample function illustrating various
fact generation techniques of AUTOFACTS

analysis tools, regardless of the problem they are trying to
solve [11], [28].

As an example, Kapus et al. [28] adopted compiler testing
techniques to automatically find errors in symbolic execution
engines. They managed to find 20 major bugs in three widely-
used symbolic execution engines. Moreover, Wu et al. [54]
presented a system for evaluating different pointer alias anal-
ysis implementations by validating the results of pointer alias
analysis tools against the pointer values that were observed at
runtime execution. They found that many pointer alias analysis
implementations wrongly state that two pointers never alias,
whereas they actually do during the execution.

While these techniques do operate in a general setting, like
AUTOFACTS, none of them operate on binary programs while
guaranteeing a sound and complete result.

IV. METHODOLOGY

In this section, we present the design of AUTOFACTS,
our system for inserting facts in binary programs such that we
know the sound and complete result expected from a static
data flow analysis (DFA).

A. Sensitivities

There are certain design choices any DFA makes to have
a tradeoff between precision and performance. These design
choices are often called sensitivities, and a few of the com-
monly used sensitivities are summarized in Table IV. We use
the notation, Sf , Sp, Scn to indicate that a DFA is flow, path
or n-context sensitive, respectively. We use the call-stack as
the context of a function. An n-context sensitive analysis uses
the call-stack as the context, but if the call-stack has more
than n elements, it only considers the top n elements in the
call-stack. Furthermore, we append the subscripts to indicate
multiple-sensitivities i.e., we use Sfp to indicate that a DFA
is both flow and path sensitive. We use Sφ to indicate the

analysis has no sensitivity. For instance, Steensgaard pointer
analysis [49] is a Sφ analysis.

AUTOFACTS generates facts such that any DFA with certain
sensitivities should produce the corresponding results. Specif-
ically, a Sx fact consists of a set of definitions (d) and a use
(u) of a variable with a result set (r), such that any DFA with
Sx sensitivity should have r as the value set for the variable
at the point of use, i.e., u.

B. Corpus Generation

Without a priori specification of the required program
logic, generating complete and realistic programs automati-
cally is a hard problem [37]. Moreover, the generated programs
could be small and may not be representative of real-world
programs. We follow the trend of the recent vulnerability
injection works [18], [43], and resort to inserting facts into
existing programs.

C. Facts generation

Generating a fact involves inserting a set of definitions of a
variable, which we call the target variable (v), and a use of the
variable at different points in the control-flow graph (CFG) of
the whole program. The program points where the definitions
and use of a fact should be inserted depends on the sensitivity
of the fact. The result set of a fact includes a set of values or
a set of set of values.

1) Sφ fact: An Sφ fact does not consider the control flow
of the program, as such the definitions and use can be inserted
at any arbitrary locations in the CFG.

• Definitions (d): The definitions can be at any arbitrary
set of basic blocks, d = {BB1, BB2, ..., BBn}, in the
CFG of the program to the same variable (v).

• Use (u): The use of the variable (v) can be at any
arbitrary basic block BBu in the CFG.

• Result set (r): The result set is a set of values used
at all the locations where the variable is defined.

Any analysis that has no sensitivity or that it is Sφ sensitive
should have r as the value set for v at u. This is because, if
the analysis is Sφ sensitivity, it should not respect the control
flow, i.e., it has no kill sets [38] and should consider the effect
of all the statements irrespective of the control-flow.

Consider the Sφ fact with target variable v3 in Figure 1,
where the definitions (i.e., store) are inserted in BB1, BBT ,
and BBF . The use (i.e., load or %3=*v3) is in BB3, and
the expected result set of an Sφ analysis at the point of uses
{&d,&c}.

2) Sf fact: To generate an Sf fact, we should insert
definitions, which can at least test the ability of the analysis
to respect the program flow within a function.

• Definitions (d): The definitions of the target vari-
able v should be in a list of basic blocks: d =<
BB1, BB2, ..., BBn−1, BBn > of a function, such
that there exists a linear flow from between them.
Formally, any BBx (x > 1) is a post dominator [36]
of BBy (y ≥ 1) where y < x.

3

• Use (u): The use of the variable should be in a basic
block BBu such that BBu is a post-dominator of
BBn.

• Result set (r): The result set contains only one value
that is used in the definition of basic block BBn. This
is because every definition in a basic block BBi will
overwrite the value defined in any of the previous basic
blocks BBj with j < i. Consequently, the only value
v can possibly have at BBn will be the value defined
in BBn.

Any Sf analysis should respect the program flow, and,
consequently, should have only one value (i.e., r) in the value
set for the variable at the use basic block, i.e., BBu.

An example of an Sf fact with target variable v1 is shown
in Figure 1, where the definitions (i.e., store) are inserted in
the basic blocks BB1 and BB2, and the use (i.e., load or
%1=*v1) is in BB3. The expected result set of an Sf analysis
at the point of use, i.e., the possible values of %1 is {&d}, as
the definition in BB2 overwrites or kills the one in BB1.

3) Sp fact: An Sp fact should be able to test the analysis
ability to distinguish between different paths in the CFG of a
function.

• Definitions (d): There should exist one definition of
the target variable v in each basic block of a set: d =
{BB1, BB2,, BBn}, such that there exists no path
between any of the basic blocks.

• Use (u): The use of the variable should be in a basic
block BBu such that BBu is a post-dominator of all
the basic blocks BBi ∈ d.

• Result set(r): The result set contains |d| number of
singleton sets, one for each basic block in BBi ∈
d, and the value in each set is the value used in the
definition in the corresponding basic block.

Any Sp analysis will compute a value set for each path in
the program. As there is only one definition in every path, the
value set computed for v in any path of the program should
be a singleton and a member of r. There can be cases where
BBu can post-dominate other basic blocks that are not in d,
which could be handled by a simple technique (omitted for
the reasons of space) by traversing the post-dominator tree.

An example of an Sp fact with target variable v3 is shown
in Figure 1, with definitions (i.e., store) in BBT and BBF ,
as no path exists between them. The use (i.e., load or
%3=*v3) is in BB3, which is a post-dominator of both BBT
and BBF . The expected result set of an Sp analysis at the
point of use (i.e., the possible values of %3) are {{&c}, {&d}},
one for each path from BBT and BBF respectively.

4) Sfp fact: One of the simple ways to generate an Sfp
fact is to just add a definition in a pre-dominator basic block of
a Sp fact. Specifically, first we insert an Sp fact: let the set of
basic block where the definitions have been inserted be d, the
use basic block be BBu, and the result set be r. Next, we find
a basic block that is a pre-dominator of all the basic blocks
in d. Finally, we insert a definition to v in the pre-dominator
basic block.

This creates an Sfp fact whose result set is also r (i.e.,
of the original Sp fact). This is because the newly inserted
definition is in the pre-dominator basic block, and, therefore
it will be killed by a definition in one of the basic blocks of
d, as any paths to BBu must flow through one of them.

Similar to an Sp analysis, an Sfp analysis will also compute
a value set for each path in the program. However, in each path,
the control-flow is respected. As explained in Section IV-C3,
the value set computed for v in any path of the program should
be a singleton and a member of r.

The Figure 1 with target variable v2 shows an example of
an Sfp fact. The definitions of v2 at basic blocks BBT and
BBF , with use at BB3, creates a path-sensitivity fact with
result set {{&c}, {&d}}. By inserting a definition at BB1 (i.e.,
a pre-dominator of both BBT and BBF), the fact becomes a
flow- and path-sensitive (Sfp) fact. The result set remains the
same, as the definition in BB1 will be killed by the definitions
in BBT and BBF .

5) Scn fact: Generating a context-sensitive fact requires the
inverse call-graph Rcg , which is a directed acyclic graph with
labeled edges, that contains a node for every function in the
program and a directed edge from node u to v with label l for
every invocation of function u by function v at the call-site l.
We construct the Rcg from the call graph [44] by inverting the
edges and considering only direct calls. Consequently, in Rcg
every edge has a unique label. We also avoid edges that can
lead to cycles.

The Scn context-sensitive fact should be able to test the
analysis ability to differentiate between the different contexts
of a function up to length n. An easy way to pass values across
different functions is through arguments. Given a function f ,
we identify all the nodes (or functions) that are n edges away
in Rcg (we also consider nodes that are less than n edges away
only if they have no successors). We call these nodes the target
functions tf . Next, we modify the signature of f to have an
additional argument, which is our target variable v. Similarly,
we modify all the call sites and functions along each path from
nodes in tf to f to have a new argument, so that a value is
passed via the newly inserted argument along the path from
each of the functions in tf to our target function f .

We insert a use of the newly inserted argument v in the
first basic block of function f . The result set r would be the
set of singletons sets where each set contains a single element
i.e., one for each function in tf . Any Scn analysis is expected
to compute the result set, as it should be able to distinguish
between different contexts up to length n. An example of a
Scn fact is shown in Appendix IX-A.

All the other combinations of sensitivities could be inserted
by exploiting dominator trees.

V. IMPLEMENTATION

At a high level, AUTOFACTS works by modifying the
provided LLVM bitcode by inserting various types of facts.
Relying on LLVM bitcode exclusively allows the system to be
architecture-independent. Furthermore, LLVM has builtin sup-
port to compute dominator trees and all the other instrumenta-
tion support needed for the implementation of AUTOFACTS.

4

A. Type of facts

We believe that pointer analysis [26] and function pointer
resolution [31] are two of the main problems in static binary
analysis. As such, in our current implementation, we insert
only pointer type variables (i.e., data pointers and function
pointers). The values are the addresses of the existing variables
visible within the scope, i.e., local variables or global variables.

Our current implementation respects language types i.e.,
all the values used in the definitions have the same type (t),
and the used variable will be have the type of a pointer to t.
For instance, if we insert a long** type variable then all the
values used in the corresponding definitions will be of type
long*.

B. Target variable

To be safe, our facts insertion should not interfere with the
existing program logic at runtime. To ensure this, for each fact,
we always create a new variable visible within all the basic
blocks selected for definitions and use insertions. For instance,
to insert an Sf fact, we either create a global or a local variable
within the function to which the basic blocks belong. This also
ensures that our definitions do not interfere with the existing
program logic.

C. Definitions

As values of definitions, we use those available within the
scope of all the basic blocks selected for definitions and use.
We assume that using existing values within the scope i.e.,
reading the value of existing variable or getting its address,
does not affect the program logic.

The definitions are LLVM store instructions of the form:
store * %valToStore, ** %targetVariable. We
make all the stores volatile to avoid that compiler op-
timization technique would remove definitions. These newly
inserted store instructions don’t affect the program logic as all
the changes are to a newly created variable.

D. Use

In most of the cases, the use of the target variable should
not affect the program logic as the target variable is newly
inserted. However, there are certain cases where the inserted
use could affect the program logic. For instance, if we have
inserted a function pointer variable, the use of which would
be an indirect call, then in essence, we insert a call to an
existing function. Depending on the function, this could affect
the program logic.

To prevent this, we introduce a conditional use guarded
by an opaque constant (i.e., opaque predicates [13]). In other
words, we insert a conditional statement that is infeasible, but
its infeasibility hard to determine statically.

AUTOFACTS is implemented as an LLVM 6.0.0 pass. It takes
the whole program bitcode, and inserts a certain (configurable)
number of facts randomly over different parts of the program.

E. Inserting a data pointer fact

To insert a fact, we randomly pick a set of definitions
and use basic blocks, that satisfy the corresponding sensitivity
requirement. For instance, in the case of a flow-sensitive (Sf)
fact, as explained in Section IV-C2, for definitions, we select a
list of basic blocks such that every basic block post-dominates
the previous basic block in the list. For use, we select a basic
block that is a common post-dominator of the first and last
basic block in the above list. Note that, such a basic block is
also a post-dominator of all the basic blocks of the list.

We then randomly pick a set of pointer values of a certain
type visible within the scope of the basic blocks. These
could be local variables, i.e., alloca instructions, or global
variables. We ensure that all these values are of the same type
t∗.

Next, we create a local or global pointer variable (random
choice) of type t** i.e., a pointer to pointer of type t visible
within all the selected basic blocks.

At each of the definitions basic blocks, we insert a store
instruction (Section V-C) of a value into the newly created
target variable.

At the basic block containing the use, we insert a condition
based on an opaque constant, and, in the body of the condition,
we add a load instruction from the target variable. To avoid
any optimization that might try to remove the load, we further
add a call to the exit function with the loaded value as an
argument. An example of the LLVM instructions that would
be added is:

%14 = l o a d i 3 2 ∗ , i 3 2 ∗∗ %t a r g e t V a r
%c a s t T o I n t = p t r t o i n t i 3 2 ∗ %14 t o i 8
c a l l vo id @exit (i 8 %c a s t T o I n t)

VI. EVALUATION

As our base dataset, we selected all the 29 programs from
GNU inetutls, compiled them using clang to generate whole
program bitcode files [50]. The complete list of the programs
is listed in Table V.

Performance: Table I shows the average time in millisec-
onds AUTOFACTS took to insert various number of data
pointer facts (of different sensitivities) to our dataset. The
performance was almost same to insert function pointer facts
as well.

As expected, inserting an Sφ fact takes the least time.
Furthermore, inserting an Sf , Sp or Sfp fact takes relatively
more time as the selected basic blocks need to satisfy certain
requirements (Section IV). An interesting thing to note is,
insertion of context-sensitive facts (Sc and Sfc) takes less time
than the path-sensitive fact (Sp). This is because more time is
required to find Sp fact compatible basic blocks which require
traversals of the dominator tree and CFG.

Complexity of the facts: On average, for flow- (Sf), path-
(Sp) and, flow- and path- (Sfp) sensitive facts the average
distance between the inserted basic blocks and the use basic
block is three. Which could be used as a weak proxy for the
complexity of the inserted facts. For the context-sensitive facts
(Sc and Sfc), the length of the context is selected at random.

5

Number of facts Sφ Sf Sp Sfp Sc Sfc

50 3.69 26.41 88.06 111.23 63.57 64.89
100 7.42 36.75 184.62 223.61 142.21 145.82
150 11.38 213.23 259.25 263.76 226.75 207.92
200 14.65 361.14 388.12 341.12 270.14 286.78
250 18.00 486.84 451.68 455.72 308.60 332.53
300 21.92 515.21 547.62 565.92 390.89 370.85
TABLE I. AVERAGE TIME (IN MILLISECONDS) TAKEN

BY AUTOFACTS TO INSERT VARIOUS NUMBER OF FACTS ACROSS
DIFFERENT SENSITIVITIES INTO DIFFERENT PROGRAMS IN OUR DATASET.

Number of facts Sφ Sf Sp Sfp Sc Sfc

50 2.22% 1.64% 1.29% 2.1% 2.67% 2.68%
100 4.19% 3.96% 2.42 4.03% 5.2% 5.1%
150 6.07% 6.03% 3.52% 5.71% 7.78 7.78%
200 8.01% 11.48% 4.59% 7.12% 10.36% 10.27%
250 9.97% 14.24% 5.65% 8.94% 12.92% 12.97%
300 11.83% 16.79% 6.68% 10.95% 15.55% 15.82%

TABLE II. AVERAGE PERCENTAGE OF INCREASE IN THE OUTPUT
BITCODE SIZE AFTER INSERTING VARIOUS NUMBER OF FACTS ACROSS

DIFFERENT SENSITIVITIES INTO DIFFERENT PROGRAMS IN OUR DATASET.

Output size: Table II shows the average percentage increase
in the size of output bitcode after inserting various number
of data pointer facts. The size increase is similar for inserting
function pointer facts as well.

As expected, the size increase is inversely proportional to
the restrictions on the corresponding fact. This is because,
the restrictions decrease the possible places to insert the
definitions, consequently the number of definitions will be less
and hence the less size. For instance, an Sp fact has more
restrictions on the places to insert than Sf and Sφ facts. Hence
as it is evident from the columns 4, 3 and, 2, Sp facts have
less percentage of increase than the Sf and Sφ facts.

Table III shows the average percentage increase in the size
of executables compiled for x86 64 from the corresponding
instrumented bitcode files. As expected, they also follow a
similar trend as the bitcode file sizes (Table II). We believe
that the size increase would follow a similar trend for the other
architectures too.

Result set: The result set for each type of fact is emitted
according to the instrumented LLVM bitcode. We intend to
tag these using LLVM debug information, which can be used
to map the result set on to the binaries.

VII. DISCUSSION

In this section, we discuss the possible issues or limitations
of our current approach of the fact generation and possible
future work.

• Realistic facts: The facts inserted may not be realistic

Number of facts Sφ Sf Sp Sfp Sc Sfc

50 3.92% 2.41% 1.75% 3.27% 3.19% 3.37%
100 7.6% 4.76% 3.17% 6.16% 5.88% 5.83%
150 10.94% 7.79% 4.66% 8.89% 8.55% 8.65%
200 14.52% 14.33% 6.09% 11.01% 11.09 10.98%
250 17.95% 17.65% 7.17% 13.98% 13.47% 13.36%
300 21.39% 20.97% 8.26% 16.86% 15.93% 15.97%

TABLE III. AVERAGE PERCENTAGE OF INCREASE IN THE COMPILED
EXECUTABLE (X86 64) SIZE AFTER INSERTING VARIOUS NUMBER OF

FACTS ACROSS DIFFERENT SENSITIVITIES INTO DIFFERENT PROGRAMS IN
OUR DATASET.

i.e., these may not be representative of the actual
usage pattern in real programs. For instance, function
pointers are usually defined in a global array and
used by indexing into it [51]. Having an evaluation
of the common usage patterns in real programs would
provide an insight into generating realistic datasets.

• Additional sensitivities: There are many other pos-
sible sensitivities a static analysis can have, includ-
ing object sensitivity [48], field sensitivity [38] and
choices of heap models i.e., call-site [39] or heap
context-sensitivity [34] which could be considered to
generate a better dataset.

• Hardness of the inserted facts: As our insertion
mechanism is random, there could be certain facts that
are easy to compute and others that could be more
difficult. A metric for hardness of a fact would be
helpful for a fine-grained evaluation of the analysis
techniques.

• Non strict types: As mentioned in Section V-A,
AUTOFACTS respects types. Although this is rea-
sonable for well-written programs, there are other
programs (e.g., the Linux kernel) that heavily uses
unsafe casts [27]. Having non-strict types could help
in generating datasets useful for evaluating analysis
tools targeting such non-conforming programs.

VIII. CONCLUSION

In this work, we presented a means to address the need
for sound and complete datasets to evaluate static binary
analysis tools. We demonstrated that automatically inserting
program facts is a reasonable way to generate such a dataset.
Furthermore, we present the methodology and implementation
of AUTOFACTS, our system for automatically injecting pro-
gram facts into LLVM bitcode to generate sound and complete
dataset for evaluating DFA-based static analysis techniques.
Our preliminary evaluation shows that the proposed method is
scalable and fast. In the future, we would like to handle other
sensitivities and perform an evaluation of existing binary static
analysis tools with our dataset. We believe that approaches
such as AUTOFACTSwill allow the community to improve
the completeness and usefulness of static analysis tools.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for
their valuable comments. This material is based on research
sponsored by the Office of Naval Research (ONR) under grant
numbers N00014-17-1-2897, N00014-17-1-2011 and by the
National Science Foundation (NSF) under grant number CNS-
1704253. This work is also sponsored by a gift from Google’s
Anti-Abuse group. Any opinions, findings, and conclusions or
recommendations expressed in this publication are those of the
author(s) and do not necessarily reflect the views of ONR or
NSF.

REFERENCES

[1] F. E. Allen, “Control flow analysis,” in Proceedings of the Symposium
on Compiler Optimization, ser. CGO ’70, New York, NY, USA, 1970.

6

[2] O. Alrawi, C. Lever, M. Antonakakis, and F. Monrose, “Sok: Security
evaluation of home-based iot deployments,” in Proceedings of the IEEE
Symposium on Security and Privacy, ser. SP ’19, San Jose, CA, USA,
2019.

[3] D. Andriesse, A. Slowinska, and H. Bos, “Compiler-agnostic function
detection in binaries,” in Proceedings of the IEEE European Symposium
on Security and Privacy, ser. EuroS&P ’17, Paris, France, 2017.

[4] D. F. Bacon and P. F. Sweeney, “Fast static analysis of c++ virtual
function calls,” in Proceedings of the ACM SIGPLAN Conference on
Object-oriented Programming, Systems, Languages, and Applications,
ser. OOPSLA ’96, New York, NY, USA, 1996.

[5] G. Balakrishnan and T. Reps, “Analyzing memory accesses in x86 ex-
ecutables,” in Proceedings of the International conference on compiler
construction, ser. CGO ’04, Barcelona, Spain, 2004.

[6] ——, “Divine: Discovering variables in executables,” in Proceedings
of the International Workshop on Verification, Model Checking, and
Abstract Interpretation, ser. VMCAI ’07, San Diego, CA, USA, 2007.

[7] C. Ballabriga, J. Forget, and G. Lipari, “Abstract interpretation of
binary code with memory accesses using polyhedra,” arXiv preprint
arXiv:1711.07257, 2017.

[8] T. Bao, J. Burket, M. Woo, R. Turner, and D. Brumley, “Byteweight:
Learning to recognize functions in binary code,” in Proceedings of
USENIX Security Symposium, ser. SEC ’14, San Diego, CA, USA, 2014.

[9] R. Bonett, K. Kafle, K. Moran, A. Nadkarni, and D. Poshyvanyk, “Dis-
covering flaws in security-focused static analysis tools for android using
systematic mutation,” in Proceedings of USENIX Security Symposium,
ser. SEC ’18, Baltimore, MD, USA, 2018.

[10] J. Caballero and Z. Lin, “Type inference on executables,” ACM Com-
puting Surveys (CSUR), vol. 48, no. 4, p. 65, 2016.

[11] C. Cadar and A. F. Donaldson, “Analysing the program analyser,” in
Proceedings of the International Conference on Software Engineering
Companion, ser. ICSE ’16, Austin, Texas, USA, 2016.

[12] D. D. Chen, M. Woo, D. Brumley, and M. Egele, “Towards automated
dynamic analysis for linux-based embedded firmware.” in Proceedings
of the Network and Distributed Systems Security, ser. NDSS ’16, San
Diego, CA, USA, 2016.

[13] C. Collberg, C. Thomborson, and D. Low, “Manufacturing cheap,
resilient, and stealthy opaque constructs,” in Proceedings of the Sym-
posium on Principles of Programming languages, ser. POPL ’98, San
Diego, CA, USA, 1998.

[14] N. Corteggiani, G. Camurati, and A. Francillon, “Inception: system-
wide security testing of real-world embedded systems software,” in
Proceedings of USENIX Security Symposium, ser. SEC ’18, Baltimore,
MD, USA, 2018.

[15] A. Costin, A. Zarras, and A. Francillon, “Automated dynamic firmware
analysis at scale: a case study on embedded web interfaces,” in
Proceedings of Asia Conference on Computer and Communications
Security, ser. ASIACCS ’16, Xi’an, China, 2016.

[16] A. Di Federico, M. Payer, and G. Agosta, “rev. ng: a unified binary
analysis framework to recover cfgs and function boundaries,” in Pro-
ceedings of the International Conference on Compiler Construction, ser.
CGO ’17, Austin, Texas, USA, 2017.

[17] B. Dolan-Gavitt, J. Hodosh, P. Hulin, T. Leek, and R. Whelan, “Repeat-
able reverse engineering with panda,” in Proceedings of the Program
Protection and Reverse Engineering Workshop, ser. PPREW ’15, 2015.

[18] B. Dolan-Gavitt, P. Hulin, E. Kirda, T. Leek, A. Mambretti, W. Robert-
son, F. Ulrich, and R. Whelan, “Lava: Large-scale automated vulner-
ability addition,” in Proceedings of the IEEE Symposium on Security
and Privacy, ser. SP ’16, San Jose, CA, USA, 2016.

[19] C. Eagle, The IDA pro book. No Starch Press, 2011.
[20] X. Fan, Y. Sui, X. Liao, and J. Xue, “Boosting the precision of

virtual call integrity protection with partial pointer analysis for c++,” in
Proceedings of the International Symposium on Software Testing and
Analysis, ser. ISSTA ’17, Santa Barbara, California, USA, 2017.

[21] C. for Assured Software, “Juliet test suite v1.2 user guide. technical
report.” National Security Agency, 2012.

[22] GNU, “GNU inetutils,” https://www.gnu.org/software/inetutils/.
[23] GrammaTech, “GrammaTech CodeSonar,” https://

www.grammatech.com/products/codesonar, 2010.

[24] L. C. Harris and B. P. Miller, “Practical analysis of stripped binary
code,” ACM SIGARCH Computer Architecture News, vol. 33, no. 5,
pp. 63–68, 2005.

[25] J. He, P. Ivanov, P. Tsankov, V. Raychev, and M. Vechev, “Debin:
Predicting debug information in stripped binaries,” in Proceedings of the
ACM SIGSAC Conference on Computer and Communications Security,
ser. CCS ’18, Toronto, Canada, 2018.

[26] M. Hind, “Pointer analysis: Haven’t we solved this problem yet?” in
Proceedings of the ACM SIGPLAN-SIGSOFT Workshop on Program
analysis for software tools and engineering, ser. PASTE ’01, 2001.

[27] R. Johnson and D. Wagner, “Finding user/kernel pointer bugs with type
inference.” in Proceedings of USENIX Security Symposium, ser. SEC
’04, San Diego, CA, USA, 2004.

[28] T. Kapus and C. Cadar, “Automatic testing of symbolic execution
engines via program generation and differential testing,” in Proceedings
of the International Conference on Automated Software Engineering,
ser. ASE ’17, Urbana-Champaign, Illinois, USA, 2017.

[29] M. Kass, “Nist software assurance metrics and tool evaluation (samate)
project,” in Proceesings of the Workshop on Evaluation of Software
Defect Detection Tools, ser. BUGS ’05, Chicago, IL, USA, 2005.

[30] O. Katz, N. Rinetzky, and E. Yahav, “Statistical reconstruction of class
hierarchies in binaries,” in Proceedings of the International Conference
on Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS ’18, Williamsburg, VA, USA, 2018.

[31] J. Kinder and H. Veith, “Jakstab: A static analysis platform for binaries,”
in Proceedings of the International Conference on Computer Aided
Verification, ser. CAV ’08, Princeton, NJ, USA, 2008.

[32] K. Kratkiewicz and R. Lippmann, “Using a diagnostic corpus of c
programs to evaluate buffer overflow detection by static analysis tools,”
in Proceesings of the Workshop on Evaluation of Software Defect
Detection Tools, ser. BUGS ’05, Chicago, IL, USA, 2005.

[33] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong
program analysis & transformation,” in Proceedings of the International
Conference on Compiler Construction, ser. CGO ’04, Palo Alto, Cali-
fornia, 2004.

[34] C. Lattner, A. Lenharth, and V. Adve, “Making context-sensitive
points-to analysis with heap cloning practical for the real world,” in
Proceedings of the Conference on Programming Language Design and
Implementation, ser. PLDI ’07, 2007.

[35] J. Lee, T. Avgerinos, and D. Brumley, “Tie: Principled reverse engi-
neering of types in binary programs,” in Proceedings of the Network
and Distributed Systems Security, ser. NDSS ’11, San Diego, CA, USA,
2011.

[36] T. Lengauer and R. E. Tarjan, “A fast algorithm for finding dominators
in a flowgraph,” ACM Transactions on Programming Languages and
Systems (TOPLAS), vol. 1, no. 1, pp. 121–141, 1979.

[37] Z. Manna and R. J. Waldinger, “Toward automatic program synthesis,”
Communications of the ACM, vol. 14, no. 3, pp. 151–165, 1971.

[38] F. Nielson, H. R. Nielson, and C. Hankin, Principles of program
analysis. Springer, 2015.

[39] E. M. Nystrom, H.-S. Kim, and W.-m. W. Hwu, “Importance of
heap specialization in pointer analysis,” in Proceedings of the ACM
SIGPLAN-SIGSOFT Workshop on Program analysis for software tools
and engineering, ser. PASTE ’04, 2004.

[40] T. of Bits, “DARPA Challenge Binaries on Linux, OS X, and Windows,”
https://github.com/trailofbits/cb-multios, 2017.

[41] ——, “Manticore: Symbolic Execution Framework,” https://github.com/
trailofbits/manticore, 2017.

[42] N. Redini, A. Machiry, D. Das, Y. Fratantonio, A. Bianchi, E. Gustafson,
Y. Shoshitaishvili, C. Kruegel, and G. Vigna, “Bootstomp: on the
security of bootloaders in mobile devices,” in Proceedings of USENIX
Security Symposium, ser. SEC ’17, Vancouver, BC, Canada, 2017.

[43] S. Roy, A. Pandey, B. Dolan-Gavitt, and Y. Hu, “Bug synthesis:
challenging bug-finding tools with deep faults,” in Proceedings of
the Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ser. FSE ’18,
Lake Buena Vista, Florida, USA, 2018.

[44] B. G. Ryder, “Constructing the call graph of a program,” IEEE
Transactions on Software Engineering, no. 3, pp. 216–226, 1979.

7

https://www.gnu.org/software/inetutils/
https://www.grammatech.com/products/codesonar
https://www.grammatech.com/products/codesonar
https://github.com/trailofbits/cb-multios
https://github.com/trailofbits/manticore
https://github.com/trailofbits/manticore

[45] S. Shiraishi, V. Mohan, and H. Marimuthu, “Test suites for benchmarks
of static analysis tools,” in Proceesings of the IEEE International Sym-
posium on Software Reliability Engineering Workshops, ser. ISSREW
’15, Washington DC, USA, 2015.

[46] Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel, and G. Vigna,
“Firmalice-automatic detection of authentication bypass vulnerabilities
in binary firmware.” in Proceedings of the Network and Distributed
Systems Security, ser. NDSS ’15, San Diego, CA, USA, 2015.

[47] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel et al., “Sok:(state
of) the art of war: Offensive techniques in binary analysis,” in Proceed-
ings of the IEEE Symposium on Security and Privacy, ser. SP ’16, San
Jose, CA, USA, 2016.

[48] Y. Smaragdakis, M. Bravenboer, and O. Lhoták, “Pick your contexts
well: understanding object-sensitivity,” in ACM SIGPLAN Notices,
vol. 46, no. 1. ACM, 2011, pp. 17–30.

[49] B. Steensgaard, “Points-to analysis in almost linear time,” in Proceed-
ings of the Symposium on Principles of Programming languages, ser.
POPL ’96, St. Petersburg Beach, Florida, USA, 1996.

[50] Y. Sui, “Whole program bitcode file,” https://github.com/SVF-tools/
SVF/wiki/Install-LLVM-Gold-Plugin-on-Ubuntu.

[51] R. Wang, Y. Shoshitaishvili, A. Bianchi, A. Machiry, J. Grosen,
P. Grosen, C. Kruegel, and G. Vigna, “Ramblr: Making reassembly
great again,” in Proceedings of the Network and Distributed Systems
Security, ser. NDSS ’17, San Diego, CA, USA, 2017.

[52] J. Wilander and M. Kamkar, “A comparison of publicly available tools
for static intrusion prevention,” in 7th Nordic Workshop on Secure
IT Systems,” Towards Secure and Privacy-Enhanced Systems”, 7-8
November 2002, Karlstad University, Sweden. Karlstad University
Studies, 2002, p. 68.

[53] ——, “A comparison of publicly available tools for dynamic buffer
overflow prevention.” in Proceedings of the Network and Distributed
Systems Security, ser. NDSS ’03, San Diego, CA, USA, 2003.

[54] J. Wu, G. Hu, Y. Tang, and J. Yang, “Effective dynamic detection of
alias analysis errors,” in Proceedings of the Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ser. FSE ’13, Saint Petersburg, Russia, 2013.

[55] X. Yin, S. Liu, L. Liu, and D. Xiao, “Function recognition in stripped
binary of embedded devices,” IEEE Access, 2018.

[56] J. Zaddach, L. Bruno, A. Francillon, D. Balzarotti et al., “Avatar: A
framework to support dynamic security analysis of embedded systems’
firmwares.” in Proceedings of the Network and Distributed Systems
Security, ser. NDSS ’14, San Diego, CA, USA, 2014.

[57] S. Zhang and B. G. Ryder, Complexity of single level function pointer
aliasing analysis. Rutgers University, Department of Computer Sci-
ence, Laboratory for Computer, 1994.

[58] M. Zhivich and T. Leek, “Dynamic buffer overflow detection,” in Pro-
ceesings of the Workshop on Evaluation of Software Defect Detection
Tools, ser. BUGS ’05, Chicago, IL, USA, 2005.

[59] M. Zitser, R. Lippmann, and T. Leek, “Testing static analysis tools using
exploitable buffer overflows from open source code,” in Proceedings of
the Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ser. FSE ’04,
Newport Beach, CA, USA, 2004.

IX. APPENDIX

The precision of analysis results with different context
sensitivities is incomparable. Consider the second and third
row of Table IV, here the result sets of Flow Sensitive and
Context Sensitive analysis are incomparable. We cannot say
one is more precise than the other as the results are provided
along different aspect of the program control flow.

Listing 1. Example to illustrate various sensitivities
1 : foo () {
2 : b a r (4) ;
3 : b a r (5) ;
4 :}

5 : b a r (i n t n) {
6 : v = 1 ;
7 : i f (∗) {
8 : v = 2 ;
9 : } e l s e {
1 0 : v = 3 ;
1 1 : }
12 :}

Listing 2. Example of a 2-context sensitive fact inserted in function foo

main () {
1 : b a r () ;
}

b a r () {
i n t ∗b ;
. .
/ / i n s e r t e d v a l u e
i n t ∗∗ temp = &b ;

2 : b a f (. . , temp) ;
}

baz () {
i n t ∗c ;

. .
/ / i n s e r t e d v a l u e
i n t ∗∗ temp = &c ;

3 : b a f (. . , temp) ;
}

/ / added argument
/ / t o e n a b l e p r o p a g a t i o n
b a f (. . , i n t ∗∗v) {

. .
/ / p r o p a g a t i n g argument

4 : foo (. . , v) ;
. .

}

bak () {
i n t ∗a ;
. .
/ / i n s e r t e d v a l u e
i n t ∗∗ temp = &a ;

5 : foo (. . , temp) ;
}

foo (. . , i n t ∗∗v) {
/ / i n s e r t e d use
i n t ∗ temp = ∗v ;

}

A. Context-sensitive fact example

Consider the example in Listing 2 and corresponding
inverse call-graph is shown in Figure 2.

Consider that we want to insert a 2-context sensitive fact in
the function foo. First, referring to the figure, finding all the
nodes that are two or less edges (if there are no successors)

8

https://github.com/SVF-tools/SVF/wiki/Install-LLVM-Gold-Plugin-on-Ubuntu
https://github.com/SVF-tools/SVF/wiki/Install-LLVM-Gold-Plugin-on-Ubuntu

TABLE IV. COMMONLY USED SENSITIVITIES ALONG WITH AN EXAMPLE RESULT FOR THE CODE SNIPPET IN Listing 1

Sensitivity Result Sets Example
No Sensitvity One for the whole program. Possible values of v = {1, 2, 3}
Flow Sensitive One for each program point. Possible values of v at line 11 = {2, 3}
Path Sensitive One for each path of the program. Possible values of v in path along line numbers 5, 6, 7, 8, 11, 12 = {1, 2}

Flow and Path Sensitive One for each path and each point of the program. Possible values of v in path along line numbers 5, 6, 7, 8, 11, 12 and at line number 12 = {2}
k-Context Sensitive One for each context (up to length k) of a function. Possible values of n with 1-call-site context < 2 > = {4}

Fig. 2. Inverse Control flow graph (CFG) of the program in Listing 2, where
the target functions (tf) are colored red and the paths to the function foo
are colored blue.

away gives us: bar, baz and, bak, which are our target
functions (tf).

Second, we change the signature of the function foo by
adding our target variable i.e., int **vv and inserting a
corresponding use i.e., int *temp = *v.

Next, we modify the call-sites and nodes that are in the
path from functions in tf to foo. From (refer the figure),
the corresponding call-sites and the functions are 2, 3, 4, 5
and baf respectively. We modify these to propagate a value
from functions in tf to foo. As shown in Listing 2, we have
modified by adding an additional parameter to baf and new
argument to the call sites.

Finally, we modify the target functions i.e., tf to pass a
value as an argument to the corresponding call-site.

The result set of this newly inserted fact at the point of use
in function foo is: {b, c, a}, one for each of the functions in
tf .

Program Name
dnsdomainname

ftp
ftpd

hostname
identify
ifconfig

inetd
logger

ls
ping
ping6

rcp
rexec
rexecd
rlogin

rlogind
rsh
rshd

syslogd
talk

talkd
telnet
telnetd

tftp
tftpd
thttpd

traceroute
uucpd
whois

TABLE V. NAMES OF THE PROGRAMS IN INETUTILS [22] USED AS
OUR DATASET

9

	Introduction
	Background and Motivation
	Related Work
	Methodology
	Sensitivities
	Corpus Generation
	Facts generation
	S fact
	Sf fact
	Sp fact
	Sfp fact
	Scn fact

	Implementation
	Type of facts
	Target variable
	Definitions
	Use
	Inserting a data pointer fact

	Evaluation
	Discussion
	Conclusion
	References
	Appendix
	Context-sensitive fact example

