
A Large-Scale Measurement Study of the PROXY
Protocol and its Security Implications

Stijn Pletinckx
University of California,

Santa Barbara
stijn@ucsb.edu

Christopher Kruegel
University of California,

Santa Barbara
chris@cs.ucsb.edu

Giovanni Vigna
University of California,

Santa Barbara
vigna@ucsb.edu

Abstract—Reverse proxy servers play a critical role in optimiz-
ing Internet services, offering benefits ranging from load balanc-
ing to Denial of Service (DoS) protection. A known shortcoming
of such proxies is that the backend server becomes oblivious to
the IP address of the client who initiated the connection since
all requests are forwarded by the proxy server. For HTTP, this
issue is trivially solved by the X-Forwarded-For header, which
allows the proxy server to pass to the backend server the IP
address of the client that originated the request. Unfortunately,
no such equivalent exists for many other protocols. To solve this
issue, HAProxy created the PROXY protocol, which communi-
cates client information from a proxy server to a backend server
at a lower level in the network stack (Layer 4), making it protocol-
agnostic.

In this work, we are the first to study the use of the PROXY
protocol at Internet scale and investigate the security impact
of its misconfigurations. We launched a measurement study on
the full IPv4 address range and found that, over HTTP, more
than 170,000 hosts accept PROXY protocol data from arbitrary
sources. We demonstrate how to abuse this protocol to bypass on-
path proxies (and their protections) and leak sensitive information
from backend infrastructures. We discovered over 10,000 servers
that are vulnerable to an access bypass, triggered by injecting
a (spoofed) PROXY protocol header. Using this technique, we
obtained access to over 500 internal servers providing control over
IoT monitoring platforms and smart home automation devices,
allowing us to, for example, regulate remote controlled window
blinds or control security cameras and alarm systems. Beyond
HTTP, we demonstrate how the PROXY protocol can be used
to turn over 350 SMTP servers into open relays, enabling an
attacker to send arbitrary emails from any email address. In sum,
our study exposes how PROXY protocol misconfigurations lead to
severe security issues that affect multiple protocols prominently
used in the wild.

I. INTRODUCTION

With the increase of users and devices connected to the
Internet, scaling Internet services has become a crucial part
of modern-day infrastructure hosting. One pivotal component
that enables many of today’s scaling solutions is the reverse
proxy server [7]. In general, proxy servers reside on the
path between a client and one or more backend servers and
forward the incoming requests from each client to the backend

infrastructure [9]. Reverse proxies, in particular, are commonly
used for load-balancing incoming client connections across a
group of server backends. This allows a system administrator
to dynamically add and remove backend servers, according
to current demands, without the need to change any frontend
infrastructure. A reverse proxy can either be hosted in-house
or outsourced to a third-party provider, such as Cloudflare [8]
or Akamai [1].

One downside of proxy-level load balancing is that each
incoming request will appear to the backend server as if it
was initiated by the reverse proxy itself. This inhibits the
backend server from correctly logging page retrievals, as well
as doing any form of access control or blocklisting at the host
level. In HTTP, this shortcoming is addressed by including an
X-Forwarded-For header in the request from the proxy
server to the backend server. By setting the value of this header
to the IP address of the client who initiated the request, the
backend server becomes aware of the actual host visiting the
page.

Unfortunately, most other protocols do not have an equiv-
alent of the X-Forwarded-For HTTP header. To solve
this, proxy software developer HAProxy created the PROXY
protocol in 2010 [32]. The core idea of the PROXY protocol
is to create a header that the proxy server communicates to
the backend server shortly after finishing the TCP handshake.
This header contains all information that the backend server
would have received if the client had directly connected to
the backend server instead of going through the proxy server
(e.g., the client’s source IP address and source port). By parsing
the header, the backend server can then use this information
in access logs, for access control, or for other use cases
(see Section II for more details about the PROXY protocol).
To avoid abuse of this protocol, HAProxy advises that each
backend server maintains a list of trusted proxy servers, and
only accepts and parses PROXY headers stemming from these
trusted proxy servers. If not, an adversary could spoof the
content of the PROXY header (such as the source IP address),
and potentially poison the server logs and bypass access
control mechanisms.

In this paper, we perform the first large-scale measurement
study of PROXY protocol usage in the wild and identify
several misconfigurations that lead to severe security issues.
We demonstrate techniques that abuse these misconfigurations
to bypass on-path proxies, therefore circumventing proxy-
based security mechanisms (e.g., Denial-of-Service (DoS) pro-
tection). Furthermore, we show that backend servers actually

Network and Distributed System Security (NDSS) Symposium 2025
24 - 28 February 2025, San Diego, CA, USA
ISBN 979-8-9894372-8-3
https://dx.doi.org/10.14722/ndss.2025.242247
www.ndss-symposium.org

rely on PROXY header information for access control, and find
hundreds of servers in the wild vulnerable to PROXY header
spoofing attacks (see Section IV-D for details on the ethical
considerations taken for this research). In the case of SMTP, we
could use the PROXY protocol to turn more than 350 email
servers into open relays, which allows adversaries to spoof
arbitrary email addresses without any form of authentication.
Generally, open email relay servers are easily detected and
added to blocklists. However, when requiring the PROXY
protocol, these open relays remain undetected, as current
scanners do not use this protocol when looking for open relays
in the wild. As such, the open relay servers found during our
study are not only harmful but also persistent. In summary,
this paper makes the following contributions:

• We launch the first large-scale measurement study on
PROXY protocol usage within the entire IPv4 space
and find that a large number of hosts accept PROXY
header information from arbitrary sources (177,983
over HTTP, 2,332,377 over SMTP, and 2,343,420 over
SSH).

• We find over 10,000 instances where PROXY header
injection in HTTP connections leads to access control
bypass. Beyond HTTP, we also show how we bypass
on-path proxies (and therefore proxy-based security
mechanisms) over SMTP (25,366 instances) and SSH
(30,882 instances).

• We demonstrate how the PROXY protocol can be used
to expose internal hosts. For example, we find 268 in-
stances over SMTP that provide a .home TLD, which
is exclusively used within internal infrastructures.

• Using the PROXY protocol, we obtain access to over
500 hosts that provide control over home automation
devices, IoT monitoring platforms, or other types of
sensitive dashboards and devices, allowing us to reg-
ulate, for example, remote controlled window blinds
or control security cameras and alarm systems.

• Using the PROXY protocol, we turn 373 SMTP
servers into open relays, giving us the ability to send
arbitrary emails from any email address.

During our measurements, we found hundreds of vulnera-
ble servers, ranging from educational institutions and security
companies, to hosting providers and Internet Service Providers
(ISPs), showing that this vulnerability exists on (supposedly)
well-maintained infrastructures. We notified all affected parties
through responsible disclosure whenever possible. We provide
details of our responsible disclosure in Section VIII.

II. BACKGROUND

A classic design pattern adopted by many Internet services
today is the “client-server” model. The idea is that a client
connects to a server (often referred to as the backend server)
that hosts a service and allows the client to interact with
that service. Indeed, while the number of servers can be
relatively few, the number of clients can potentially be many.
To efficiently scale and protect this model, we often find an
additional, yet generally hidden, component implemented in-
between the client and backend server, called a proxy server.

Client InternetProxy Backend

(a) Forward Proxy

Client Internet Proxy Backend

(b) Reverse Proxy

Fig. 1: Proxy server types. Figure (a) shows an example of
a forward proxy, which resides commonly between the client
and the Internet backbone. Figure (b) shows an example of a
reverse proxy, which resides commonly between the Internet
backbone and the backend server(s).

A. Proxy Servers

The goal of a proxy server is to improve the performance,
security, and/or privacy of an Internet application. In HTTP,
for example, static web pages can be cached by a proxy
server. When a client requests a cached web page, the proxy
can serve the page directly as opposed to first contacting
the backend server. This reduces the load on the backend
infrastructure and improves the response time for a request.
Furthermore, proxy servers can check requests and responses
for any potential malicious activity (i.e., JavaScript injection
to perform cross-site scripting), and subsequently abort the
communication when needed [35].

From a backend server’s point of view, any request involv-
ing a proxy will look as if it was initiated by the proxy itself.
This makes the backend server oblivious to the original client’s
IP address, therefore increasing the privacy of the client. This
may not always be desired by the backend application, which
may need this information for logging purposes or access
control decisions. As such, in HTTP, the proxy server can
set the X-Forwarded-For header to communicate to the
backend server information associated with the client.

A proxy server can reside in two locations on the network
path: either between the client and the Internet backbone, in
which case we call it a forward proxy, or between the Internet
backbone and the server, referred to as a reverse proxy. We
elaborate below.

Forward Proxies: In a forward proxy setting, the proxy is
responsible for forwarding the client’s packets to the Internet,
until they eventually reach their intended server. Figure 1a
depicts a representation of such a configuration. Because
forward proxies are purposefully used by the client, their goal
is often to hide the client’s IP address (since from the server’s
side, it looks as if the initial packet was sent by the proxy),
and/or access hosts that would otherwise not be available to
the client.

Another use case of these proxies is for organizations to
block and monitor outbound access from within a company
network. For example, a high school could implement a
forward proxy for the student’s network such that it can restrict
access to social media or gaming servers.

2

Reverse Proxies: In a reverse proxy setting, the proxy resides
closer to the backend server, often sharing the same internal
network (see Figure 1b). This proxy type is regularly used
as a load balancer to dynamically allocate requests within the
backend infrastructure if, for example, a web page is hosted on
multiple servers. Since all incoming requests have to flow first
through the proxy, the backend servers can be hidden behind
a firewall, making them unavailable to the public for direct
attacks. Then, at the proxy level, access control and filtering
can be applied to prevent malicious requests from reaching the
internal network. This creates several layers of security, while
providing the opportunity to scale, allowing for a more robust
and modular infrastructure.

Contrary to a forward proxy, a reverse proxy is usually
under the control of the same organization that runs the
backend servers, through either an in-house solution or by
renting a proxy server from a third party. As mentioned before,
the X-Forwarded-For HTTP header allows the proxy to
communicate the IP address of the client that initiated the
request to the server. However, a fundamental shortcoming of
this approach is that it exclusively works for HTTP(S). As
such, backend servers need to look for different solutions if
they want to log similar information from protocols other than
HTTP. To solve this problem, HAProxy created the PROXY
protocol [32].

B. HAProxy PROXY Protocol

The HAProxy PROXY protocol aims to transport client
information from the proxy server to the backend server, re-
gardless of which application-level protocol is being used [32].
The idea is to insert a header (called the PROXY protocol
header) at the start of each connection between the proxy and
the backend server. This header carries over client information,
such as the source IP address and the source port, which can
be accessed and used by the backend server. At the moment,
two versions are specified (Version 1 and Version 2), which
we explain in more detail below.

Version 1 – Plaintext Header: Version 1 of the PROXY
protocol uses a plaintext header, shown in Listing 1. The
header prefix starts with the keyword PROXY, followed by the
IP protocol version, which can either be TCP4 for IPv4, or
TCP6 for IPv6. The next 4 fields are reserved for the source
IP address of the client that initiated the request, the source port
of that same client, the destination IP address of the backend
server, and the destination port of the backend server. The
header terminates with a CRLF sequence.

PROXY TCP4 1 . 2 . 3 . 4 1337 4 . 5 . 6 . 7 80

Listing 1: Example of a PROXY protocol header. The header
starts with the “PROXY” indicator, followed by the IP protocol
version. Then, the header contains the source IP address,
source port, destination IP address, and destination port.

The simplicity of the v1 PROXY protocol header makes
it easy for existing server software to implement supporting
functionality, both from the sender side (as a proxy) as well
as on the receiver side (as a backend server). The plaintext
header is intentionally designed to not be mistaken for a valid
HTTP request or other protocol-specific formats. Even if no
support is available to parse a PROXY protocol header, the

format will not get misinterpreted, but will rather yield an
error on the server side. Therefore, administrators do not have
to worry about receiving accidental PROXY headers.

In practice, when the proxy server receives a request from
the client, the proxy server will create a PROXY protocol
header using the IP address and port number of both the client
and the server. Prior to forwarding the request of the client to
the backend server, the proxy server will include the created
header during the initiation of the connection with the backend
server. The backend server can then parse the information in
the header, and use it accordingly.

Version 2 – Binary Header: Version 2 of the PROXY
protocol adopts a binary format. Although harder to debug,
the binary header is more efficient to parse. Especially for
IPv6, there are various formats to represent an address, which
are harder to parse in plaintext compared to binary. Currently,
Version 2 of the PROXY protocol is not yet supported by
most server applications. Given the fairly recent advent of this
new protocol, the Version 1 header was intentionally designed
for a smooth roll-out that is easy to debug. Many server-
side applications are, therefore, still limited to only providing
support for Version 1 of the PROXY protocol. As such, we
focus the rest of this study on the Version 1 header of the
PROXY protocol.

III. PROXY PROTOCOL SECURITY CONSIDERATIONS

The HAProxy PROXY protocol header is low in com-
plexity, making it straightforward to parse for servers. Cor-
respondingly, for a sender, it is relatively easy to create
such a header and incorporate it during a connection setup.
However, from an adversarial point of view, it is equally easy
to temper with the PROXY header, which can potentially lead
to unwanted behavior. To prevent this, HAProxy recommends
in its specification to only accept PROXY headers from a set of
known sources [32]. This means that a backend server should
never attempt to detect whether a PROXY header is present,
but should rather know a priori whether the request will be
received from a proxy server that will include the PROXY
protocol implementation. HAProxy does not provide any detail
on how or where this distinction should be made, i.e., whether
this should be incorporated into existing server software (e.g.,
using a lookup table for the source IP), or at the firewall level.
To get an overview of how this happens in practice, we evaluate
the two most popular server software at the time of writing:
NGINX and Apache.

A. Simulation Environment

We simulate a proxy environment on a local setup to
study the PROXY protocol in further detail. We implement
two backend servers (one using NGINX, one using Apache)
that reside behind a proxy server (running HAProxy) that
loadbalances among the two backend servers (see Appendix A
for more details).

For both backend servers, we use the standard off-the-
shelf configuration file that gets pre-installed during setup,
which runs an HTTP server on port 80. We then configure
the load balancer to forward all web traffic to both backends
in a round-robin fashion. When requesting the web page, our
communication first goes through the proxy server, after which

3

the proxy server chooses one of the backend servers to forward
the request to1. Upon examining the logs of both backend
servers, each request is attributed to the proxy server, and no
information is recorded about the initiating client.

To enable the PROXY protocol on our load balancer, we
first configure HAProxy to add the PROXY header when
initiating a request to any of the backend servers. We do so by
adding the send-proxy keyword in the configuration file as
shown in Listing 3 of Appendix A. Subsequently, we configure
both backend servers to parse the PROXY protocol during a
connection setup.

PROXY Protocol Configuration: Both NGINX and Apache
make it trivial to enable PROXY protocol support on the back-
end side. For NGINX, we merely append proxy_protocol
to the listen instruction (Listing 4 in Appendix A), and for
Apache, we add the line RemoteIPProxyProtocol On
to our virtual host (Listing 5 in Appendix A) and include
the remoteip module. While both configurations have a
common simplicity, the effects are surprisingly different be-
tween the two systems. Both will correctly parse any incoming
PROXY header, but where NGINX will ignore any information
from the header, Apache by default will change the value of
the incoming IP address from the proxy’s IP address to the IP
address mentioned as the source IP address in the PROXY
header (i.e., the IP address of the client who initiated the
request).

Recall from Section II that the PROXY protocol specifica-
tion instructs to configure a list of known hosts from which
to accept and parse the PROXY header. At the moment of
writing, both NGINX and Apache do not have any mechanism
in place to do so. Moreover, neither of the software vendors
mention anything about this precaution in their documentation
of the PROXY protocol. It therefore requires a proactive
system administrator to create and implement a design for
handling this functionality that is both efficient and easy to
maintain. If not, any client can send a PROXY header directly
to the backend server. Moreover, given Apache’s default behav-
ior of changing the source IP address of any incoming request
to the one specified in the PROXY header, an adversary can
easily spoof the content of the PROXY header, which will be
parsed and accepted by the backend server.

B. Security Implications

Based on the implementation described above, we identify
3 misconfigurations that can be abused using the PROXY
protocol: 1) The backend infrastructure is not hidden from the
public, for example, using a firewall. This allows any client
to directly connect to the backend server, circumventing the
proxy server. 2) The backend server does not check whether
a connection stems from a trusted and known proxy. 3) The
backend server does not validate whether the client originating
the request has access to the requested content (and potentially
assumes that the proxy server already took care of this step).

Figure 2 shows an overview of how an attacker can abuse
the PROXY protocol on misconfigured servers. In scenario A,
we depict how an authorized client legitimately interacts with

1Note that, for simplicity, we configured no caching mechanism.

a server using the PROXY protocol. Instead of directly con-
necting to the backend server, the client connects to the proxy
server, which then forwards the request prefixed by a PROXY
header to the backend server. In scenario B, we depict how
this setup prevents an unauthorized attacker from accessing
restricted content. If the attacker connects to the proxy server
using an HTTP GET request, the proxy recognizes that the IP
is not authorized, and denies the request. If the attacker instead
connects to the backend server directly, using an HTTP GET
request, the backend server will discard the request, since it is
not adhering to the PROXY protocol format.

However, if the attacker directly connects to the backend
server and manually injects a PROXY header (scenario C), the
backend server might believe that the connection stems from
a proxy server, and hence, operates under the assumption that
access control checks were already performed by the proxy.
Furthermore, many proxy servers provide Denial of Service
(DoS) protection by rate limiting or blocking abusive behavior
of clients. By using the PROXY protocol to directly connect to
the backend server, an adversary bypasses the proxy, and hence
also bypasses any proxy-based protections. For scenario C, the
adversary abuses all three misconfigurations described above.

Nonetheless, even if the backend server checks whether the
initiating client has access to the requested content (therefore
eliminating the third misconfiguration), an adversary can still
spoof the source IP address value in the PROXY header. This
is depicted in scenario D. If the adversary knows which IP
address range is accepted by the backend, they can spoof a
value within that range. If not, the adversary will have to guess
an accepted IP address. However, we will later show in our
experiments that choosing an internal network address (such as
for example 10.0.0.10 or localhost) is often sufficient
to bypass this access control check.

We tested scenario D in our simulation environment. We
configure our Apache server to only allow requests stemming
from the IP 192.168.56.100. When sending a regular
HTTP GET / request (i.e., without PROXY header) from
an IP address different than 192.168.56.100, the server
returns a 403 Forbidden, as expected. However, if we
send from the same client an HTTP GET / request with
a PROXY header that has a source IP address value of
192.168.56.100, we receive back a 200 OK, indicating
we successfully bypassed the access control mechanism. In
addition to bypassing DoS protection and bypassing access
control checks, injecting a PROXY header can also lead to
“log forging” [28], meaning that an attacker can poison the
logs of the backend server.

Note that the above mentioned vulnerabilities are not due
to a fundamental issue in the PROXY protocol itself, but rather
due to a misconfiguration on the backend server. By default,
the backend server will trust PROXY protocol information
from any source that sends it. If an administrator is not aware
of these default settings (and hence, does not change them), the
backend server runs in a misconfigured setting, which harms
the security posture of the backend infrastructure. In our study,
we explore these misconfigurations in the wild and find that
hundreds of hosts are vulnerable to the above described attacks.

4

Backend
(using IPB)

Proxy

HTTP GET / …

PROXY TCP4 IPC portC IPB portB
HTTP GET / …

Client
(using IPC)

Backend
(using IPB)

Proxy

Attacker
(using IPA)

HTTP GET / …

Backend
(using IPB)

Proxy

Attacker
(using IPA)

PROXY TCP4 IPA portA IPB portB
HTTP GET / …

Backend
(using IPB)

Proxy

Attacker
(using IPA)

PROXY TCP4 IPspoof portA IPB portB
HTTP GET / …

A B C D

HTTP GET / …

Fig. 2: Attack scenario using the PROXY protocol. Scenario A shows a legitimate (and typical) interaction between the client
and the infrastructure. Scenario B depicts how an attacker is not able to access both the proxy and the backend server using
regular HTTP request. However, by injecting a PROXY header (depicted in Scenario C) the attacker can directly communicate
to the backend server and bypass the proxy server. Scenario D shows an advanced version of this approach where the attacker
also spoofs the source IP address value in the PROXY header to circumvent access control checks on the backend side.

C. HTTP X-Forwarded-For Header

For HTTP, the goal of the PROXY protocol is equal to that
of the X-Forwarded-For HTTP header: as a proxy, provide
information to the backend server that it would have otherwise
also received if there was no proxy in place. It is therefore
reasonable to assume that the above security issues are equally
present in the implementation of the X-Forwarded-For
header. We test this in our simulation environment and find
that there are actually much more robust parameters avail-
able for the X-Forwarded-For header, specifically aimed
at improving security. For example, Apache allows for a
RemoteIPTrustedProxy option, which sets a list of prox-
ies trusted by the backend server. If a request contains an
X-Forwarded-For header but does not stem from a trusted
proxy, the value in the header will not be used by the backend
server. Such functionality is missing from the PROXY protocol
implementation in Apache.

IV. METHODOLOGY AND ETHICS

We study the prevalence and security impact of the PROXY
protocol through a large-scale measurement study on the Inter-
net. Performing Internet-scale measurements requires careful
planning and considerations to ensure sound data collection
while remaining within the bounds of ethical research. Below
we motivate our methodology and scope, and highlight our
threat model. We also discuss the ethical considerations for
this study.

A. Aim and Scope

The goal of this study is to capture potential PROXY
protocol misconfigurations in the wild, and assess the security
posture of the corresponding infrastructure. Since there exists
no robust methodology to detect proxied services in the wild
and at scale, we have to cast a wide net and rely on Internet
scanners to find potential hosts residing behind a proxy. The
idea is to find instances that accept the PROXY header.
We know from Section III that backend servers receiving

connections with the PROXY protocol header should only
consider incoming requests as valid when they originate from
a known source (i.e., the designated proxy server). As such,
if we probe a server using the PROXY header and receive
back a successful 200 OK response, we have a potential
misconfiguration, given that our scanning infrastructure is (to
the best of our knowledge) not part of any backend server’s
list of known proxies.

We aim to not only shed light on the prevalence of these
misconfigurations but to also demonstrate their security impact,
and explain what can be done from a website administrator’s
side, as well as from server-software developers’ and the
HAProxy PROXY protocol maintainers’ perspectives.

HAProxy maintains a list of server software distributions
that currently offer support for the PROXY protocol [33].
Most dominantly present in this list is software meant for
serving the HTTP protocol. As such, we focus the majority of
our work on HTTP (Section V). Nonetheless, HAProxy also
lists several SMTP-supporting software. We therefore launch
a second study focusing on the SMTP protocol (Section VI).
Lastly, industry players such as Cloudflare offer support for
interpreting the PROXY protocol through third-party software.
For example, mmproxy is a TCP proxy that resides near
the application, and translates connections coming from the
loadbalancer and that contains the PROXY header [6]. It does
so by creating a new packet (without the PROXY header)
and spoofing the IP address and port number in the newly
created packet according to the values from the initial PROXY
header. This new packet then gets forwarded to the application,
which will interpret the packet as if coming directly from the
originating client. Given the existence of such functionality, we
also take a look at a protocol not listed by HAProxy, namely
SSH, and assess whether it makes use of the PROXY protocol
in the wild (Section VII).

5

B. Data Collection

To find instances of servers accepting the PROXY protocol,
we first need to know which servers operate our applications
of interest. Using ZMap, we initiate each experiment with
an Internet-wide port scan to collect all hosts listening to a
specific port (e.g., for HTTP, this would be port 80). ZMap is
a stateless scanner that efficiently scans the entire IPv4 address
range at the Layer 4 level (using TCP SYN packets). Next,
we feed the results of ZMap into ZGrab, which is a more
fine-grained Internet scanner that operates at Layer 7. Because
ZGrab does not support the PROXY protocol by default, we
develop supporting functionality for it in the http, smtp, and
ssh modules of the scanner.

For each protocol, we launch six different tests on each
target IP address gathered from the ZMap scan. Each test is
designed to observe the potential differences in the behavior of
the server when changing the values in a PROXY header. Our
first test functions as a baseline, and consists of a regular probe
without an injected PROXY header. For the second test, we
inject into each packet a PROXY header that contains the IP
address of our scanning machine in the source IP address field
of the header. This gives us an initial idea of how servers react
when receiving a PROXY header from an arbitrary source on
the Internet2. In case the baseline probe is unsuccessful, but
we receive a status code of 200 OK with the injected header,
we assume that we potentially bypassed the on-path proxy (see
scenario C in Figure 2). If this attempt is unsuccessful, we try
again using a spoofed value for the source IP address in the
PROXY header. Specifically, we launch four tests, each with
a different IP address in the PROXY header, representing an
internal address from the following list:

• 127.0.0.1

• 10.0.0.10

• 172.16.0.10

• 192.168.0.10

By using the localhost loopback address along with three
common internal network addresses [25], we test if the re-
ceiving server believes that the initial request originated from
within the server’s network. We chose these IP addresses to
potentially circumvent access control checks by the back-
end server on the source IP address of the initiating client
(scenario D in Figure 2). Recall from Section III that an
adversary needs to spoof a known IP address to the backend
server to bypass the backend server’s access control. To avoid
having to bruteforce known IP addresses, we hypothesize that
internal network addresses will generally be granted access
to content within the infrastructure. If a target server returns
an unsuccessful response to the first two probes, but responds
successfully to a probe with a spoofed IP address, we have
potentially bypassed the access control checks of the server
using the PROXY protocol. To verify each bypass, we launch
a final probe to confirm that the server granted this bypass
because of the PROXY protocol and not because it received
unexpected data [19]. Concretely, we send a request with a
malformed PROXY header, shown in Listing 2, that contains
“ABC” as the protocol, which is invalid according to the

2Note that if the server does not support the PROXY protocol, it will simply
return an error when receiving a PROXY header. See Section II for more
details.

Send
regular
probe

Send
PROXY
probe

200 OK Non-successful

Send
malformed

PROXY
probe

False Positive

200 OKNon-successful

Discard
Non-successful

Send
spoofed
PROXY
probes

(4x)

Non-successful
200 OK

200 OK
Send

malformed
PROXY
probe

200 OK

Scenario C
 bypass

Non-successful

Scenario D
 bypass

Fig. 3: Flow diagram of our measurement methodology. We
first find all instances that do not give us a successful response
with a regular probe. Then, we probe using a PROXY header
containing our own IP address. If we do get a successful
response to this probe, we achieved the bypass of scenario C in
Figure 2. If unsuccessful, we try again using a spoofed source
IP address in the PROXY header to see if we can achieve a
bypass of scenario D. For each successful bypass, we check
whether the target server indeed reacts based on the PROXY
header by sending a malformed header. If, however, the target
also responds successfully to this, we consider the bypass a
false positive.

standard. If this time we receive an unsuccessful response, we
confirm that the server indeed reacted to the PROXY protocol.
Figure 3 visualizes our methodology.

PROXY ABC IPsrc Portsrc IPdst Portdst

Listing 2: Malformed PROXY protocol header used for sanity
check. Notice that the second field shows “ABC” rather than
a known protocol, such as “TCP4”

Since our four spoofed tests have the potential to bypass
access control, we apply an abundance of caution to avoid
leaking any personally identifiable information (PII), or other
(security) sensitive content. Concretely, for HTTP, we only
perform a full HTTP GET request for the non-PROXY header
and the PROXY header containing our own IP address, but
resort to an HTTP HEAD request for the scans containing an
internal network IP address. This avoids accidentally receiving
an internal web page containing PII. We elaborate more on our
safeguards and ethical considerations in Section IV-D.

C. Threat Model

For this study, we assume an attacker external to the
network, with no prior knowledge of the network infrastructure
or access control policies. They use ordinary hardware on an
average Internet connection, having no access to specialized
measurement setups or large-scale server pools. We assume

6

the attacker wants to bypass a network’s access control mech-
anisms. The target network runs one or more backend servers,
which are configured behind a reverse proxy. All backend
servers expect a PROXY header for each connection. We
assume access control is either implemented at the backend
level or at the proxy level.

D. Ethics

Research involving active measurement probes requires
careful evaluation of the potential ethical implications [14].
We use ZMap for our initial port scan, which has a known
fingerprint (IP ID of 54321) that is easy to block for system
administrators [13]. As for the ZGrab scan, we follow best-
practices [13], [2] by providing several opt-out channels:

1) For HTTP, all scans contain a custom User-Agent
with a description of the study and a contact email.

2) The server from which we scan can be reached over
HTTP(S), and redirects to a website explaining our
research and providing contact details.

3) We configure a TXT record for the server from which
we scan that contains contact info and a reference to
our website.

In total, we received two opt-out requests.

As mentioned before, for the HTTP requests aimed at
demonstrating a potential access bypass, we refrain from doing
a full HTTP GET request, and only collect the status code
received from performing an HTTP HEAD request to avoid
collecting PII. Furthermore, at no point in our experiment do
we escalate any of our obtained privileges, or try to scrape
sensitive information from any of the collected web pages. Our
research study follows the guidance provided in the Menlo re-
port [2]. We always evaluate the utility of our research against
the potential harm it may cause. Finally, we communicate all
discovered security issues to the involved parties whenever
possible (see Section VIII for our full responsible disclosure
process).

Later in this paper we show how including the PROXY
header can give access to sensitive web pages and platforms,
such as smart-home control systems and facility monitoring
services. At no point in this study do we execute commands
on any of these platforms. Lastly, we restrict access to the
collected data to those involved with this study.

V. HTTP RESULTS

In this section, we present the results of our large-scale
measurement study on the HTTP protocol (Sections VI and VII
cover SMTP and SSH, respectively). Apart from gaining
general insight into host responses to the PROXY protocol,
we expose misconfigurations of this protocol in the wild,
which in some cases lead to information leakage, infrastructure
exposure, or access control bypass.

A. General Observations

From our ZMap scan, we collect 51,246,816 hosts listening
on port 80 and 44,752,582 listening on port 443. After feeding
this information into our ZGrab scan, we obtain more details

1xx 2xx 3xx 4xx 5xx Error other
Status Code Range

103

104

105

106

107

Nu
m

be
r o

f R
es

po
ns

es
(lo

g)

not-PROXY
PROXY

(a) HTTP

1xx 2xx 3xx 4xx 5xx Error other
Status Code Range

104

105

106

107

Nu
m

be
r o

f R
es

po
ns

es
(lo

g)

not-PROXY
PROXY

(b) HTTPS

Fig. 4: Status code responses received during our measure-
ments. We only report on the responses for the requests sent
without a PROXY header, and the requests sent with a PROXY
header containing our real IP address in the source address
field. Figure (a) depicts the results for HTTP and Figure (b)
for HTTPS. Note how for HTTP, the variety in status codes
is rather high, which should not be the case according to the
PROXY protocol specifications.

about the responsiveness of these hosts. Figure 4 shows a sum-
mary of the HTTP status codes received. Note that, for now,
we focus only on the probes without a PROXY header and
the probes with our server IP address in the PROXY header.
What stands out immediately is the discrepancy between HTTP
and HTTPS. For HTTPS, the majority of the responses are as
expected, and in line with the HAProxy specifications of the
protocol, namely: respond with an error to each PROXY header
received from a host not in the known-proxies list, or if the
protocol is not supported. For HTTP, on the other hand, the
responses are much more dispersed among the ranges of status
codes, creating an interesting spectrum for further inspection.
As such, we focus the rest of our results on the HTTP set.

While we do see that a majority of the responses to our
PROXY header returns an error or a response in the 4xx
range, there is still a significant number of responses that
return a status code in the 2xx range (280,713), indicating we
successfully retrieved content from the server. However, even
with a 2xx status code, a response can still return an error
page. As such, we filter out bogus success responses, which

7

Fig. 5: The change in response code after using a PROXY
header (containing our real IP address). On the left side, we see
the number of responses received for each status code range
when sending a request without a PROXY header to each host.
On the right, we see the same but when sending a PROXY
header with our IP address in the source address field. The
flow shows the change in status code per host. Notice that
some of the 2xx responses on the right side stem from 4xx
or other error responses from the left.

are pages that have an HTTP status code of 200 (ok), but
display a text similar to “Page Not Found,” “Access Denied,”
“Domain Suspended,” etc. We do this by creating a list of
common phrases and patterns that occur on such pages and
discarding each web page that matches an entry in our list. In
total, we collected 63 such patterns3. This filters out 102,730
web pages or 36.6%.

Figure 5 provides more detail on how our target hosts
respond differently to requests with and without a PROXY
header. The left-hand side of the figure depicts the status
code ranges received during our regular scan (i.e., using
no PROXY header), while the right-hand side depicts the
responses received after sending a PROXY header with our
own IP address. From this Sankey plot, we see that the majority
of servers responding with a 2xx status code to the PROXY
header gave a similar response if given a regular request
without the header. We are more interested in the cases that
initially would not respond within the 2xx range, yet do so
when presented with a PROXY header. We investigate these
hosts in more detail later in the section.

3While we initially started with a smaller number of patterns, by investi-
gating various pages throughout our study we encountered more patterns that
were not present on our list. These patterns were each time added, after which
we ran our analysis pipeline again. Eventually, we reached 63 patterns.

TABLE I: Classification results. We noticed a significantly
higher amount of boilerplate pages and login pages for our
experiment group compared to our control group. Note that
the “Miscellaneous” label indicates the number of pages that
could not be classified into any of the other groups.

Experiment Group Control Group

Boilerplate 118,641 (66.66%) 64,544 (36.83%)
Login 34,474 (19.37%) 12,136 (6.82%)
Miscellaneous 12,791 (7.19%) 75,897 (42.64%)
Enable
JavaScript 6,577 (3.70%) 1,439 (0.81%)

Cannot parse 3,697 (2.08%) 3,696 (2.08%)
NGINX 1,345 (0.76%) 12,875 (7.23%)
Temperature
Measurement 304 (0.17%) 6 (<0.01%)

Construction 107 (0.06%) 507 (0.28%)
Apache 47 (0.03%) 6,883 (3.87%)

B. Source Code Clustering and Analysis

Recall from Section III that, according to the specifications,
a backend server should only act on a PROXY header when the
connection comes from a known proxy. Yet, our measurements
show that over 170,000 hosts return an HTTP status code
in the 2xx range when sending a PROXY header from our
server, which does not function as a proxy to any server on
the Internet. As such, we investigate these pages further.

We cluster together all web pages that are near-duplicates
of each other. We do this by creating a fingerprint for each
web page, using Charikar’s fingerprinting algorithm [4], and
clustering together pages with the same fingerprint. We chose
Charikar for its small memory footprint and fast perfor-
mance [17], [21]. This creates 9,429 clusters, with the biggest
cluster containing 31,284 pages.

We manually inspect a set of pages from the biggest
clusters and classify them based on common patterns. Con-
cretely, we take one web page from each cluster with a size of
100 or more. Since each cluster consists of (nearly) identical
web pages, we only have to inspect one page per cluster. In
total, we inspect 60 clusters. Table I shows the result of our
classification. To compare, we also do the same for a control
group of the same size as our experiment group, consisting of
web pages that responded with a code in the 2xx range during
our initial scan (i.e., without adding any PROXY header).

The majority of the web pages in our experiment group
(66.66%) contain what we label as “boilerplate” code: an
HTML file that contains a template for a web page but does
not have any content in place (yet). We assume these were put
online with the intent for further development, but have not
been finished. Previous work has shown that this is indeed
a common sight on the Internet, and has been specifically
observed within the context of orphaned web pages [29].
The number we observe is noticeably larger than the amount
of boilerplate web pages in our control group (66.66% vs.
36.83%). This suggests that the pages we found are not meant
to be online (yet), and potentially still under development.

The second most encountered type of web page in our
experiment group are login pages (19.37%). Again, we notice
a stark difference compared to our control group where only
6.82% of all web pages are login pages. This could indicate

8

that these pages are internal (potentially residing behind a
proxy) and hence require login credentials for authorized
access. Moreover, if the proxy server protects these pages from
brute force attempts or injection attacks [35], an attacker can
circumvent this using the PROXY protocol. Due to ethical
reasons, we did not make an attempt to verify this hypothesis.

Interestingly, 304 (0.17%) web pages display a web portal
for monitoring temperature measurement sensors in locations
such as data centers or power plants. In our control group,
we find an insignificant number of these web pages (less
than 0.01%) demonstrating again that these pages are (un-
intentionally) exposed via the PROXY protocol. We later
demonstrate how we find more of these sensitive web pages
in our experiment group.

The remainder of our categories are pages displaying an
error message saying we need to enable JavaScript (3.70%),
NGINX or Apache default pages (0.76% and 0.03%, re-
spectively), or pages noting that the web page is “under
construction” (0.06%), which is similar to the boilerplate code
we classified earlier. Notably, we discover that the number of
default NGINX and Apache pages is noticeably higher in our
control group (7.23% and 3.87%, respectively).

Miscellaneous Web Pages: For both groups, we are still left
with a “Miscellaneous” category, which contains the pages
we could not classify in either of the other categories. We
highlight that, for our control group, this is the category with
the largest number of web pages (42.64%). This shows there
is a high variety among the web pages in our control group,
which is to be expected since these pages are meant to be
“regular” and publicly accessible. We verify this by manually
inspecting a sample of 200 web pages. In this sample, we
indeed only observe common web pages such as company
websites, product advertisements, event information, personal
websites, and educational institutions.

For our experiment group, the miscellaneous category is
considered the long tail of our classification (7.19%). We
again sample 200 web pages for manual inspection. Contrary
to our control group, we barely encounter any regular web
pages in this category. Rather, we notice that the majority of
the web pages in this category provide an access portal to
home automation systems, temperature sensors, electric vehicle
charging station diagnostics, Internet of Things (IoT) sensors,
and intrusion alarm monitoring, among others. Concretely,
we find that 36% of the inspected web pages are instances
of such portals, all of which provide us with some sort of
platform to execute commands. For example, in the case of the
home automation portals, we could potentially open and close
blinds, control light switches, or regulate building climate. For
ethical reasons, we never executed any command on any of
the encountered web pages.

Several monitoring portals used the same source code for
displaying data, suggesting the presence of a general platform
for displaying data stemming from sensors or external APIs.
We searched the remainder of the miscellaneous group for
this particular platform and found a total of 556 hosts running
this monitoring software, exposing sensitive information such
as network configurations, temperature measurements, water
levels, processor usage, memory usage, and other sensor data.
These servers are hosted in 37 different countries, with the

majority residing in the US (57.01%), followed by Spain
(7.91%). They are spread across 67 different Autonomous
Systems (ASs), the majority being under the control of Verizon
or Vodafone Spain.

The remainder of the pages we inspect manually are
misclassified error pages, misclassified login pages, or regular
pages. Note that we merely investigated a sample of the web
pages, revealing that 36% expose sensitive access and data.
Given that the total size of our Miscellaneous category spans
12,791 pages, we could potentially extend this result to over
4,600 pages exposing sensitive information. This analysis
shows that misconfigured proxy infrastructures can expose
sensitive portals. As such, deploying the PROXY protocol
can provide a false sense of security, since the web pages
behind them appear to be inaccessible, yet are uncovered
by injecting the PROXY header. Moreover, this incentivizes
an adversary to incorporate the PROXY header into their
target reconnaissance, since our study shows that scanning the
Internet for this protocol offers a subset of sensitive pages at a
volume that is easy to process for targeted attacks. We further
discuss these implications in Section IX.

From our final probe (using the malformed PROXY header)
we received zero successful responses, indicating that we
achieved access to the sensitive platforms due to our PROXY
header injection. Notably, when we try the same approach
using the X-Forwarded-For HTTP header field, we only
retrieve 9 successful responses, showing that this phenomenon
is almost fully unique to the PROXY protocol.

C. Access Bypass

Recall from Section III that some servers perform access
control checks on the source IP address given by the PROXY
header. In scenario D of Figure 2 we explain how this can
still lead to an access bypass if the attacker spoofs the source
IP value of the PROXY header. In our measurement exper-
iment, we therefore included several probes with a different
source IP address in the PROXY header to detect potential
access bypasses in the wild (see Section IV for more details).
Concretely, we take each host that responds unsuccessfully to
our baseline probe, yet responds with a status code in the 2xx
range when including a (spoofed) PROXY header, indicating
an access bypass. We consider a response unsuccessful if it
comes with a status code in the 4xx or 5xx range, or if we
receive a connection error.

Table II summarizes our results. For each test, we report on
two numbers: the initial results (written in parentheses), and
the results after filtering out the false positives. We consider
a result a false positive if it also responds successfully to
a malformed PROXY header. Considering all probes, we
find that including a PROXY header leads to an access
bypass on 10,089 hosts. In 5,863 cases, it does not matter
which source IP address we provide in the PROXY header.
Nonetheless, the headers with an internal IP address achieve a
higher number of access bypasses.

If we narrow our results to hosts that initially responded
with a status code only in the 4xx range rather than any
unsuccessful response, we still achieve a successful bypass
on over 1,000 hosts. If we narrow down even further to
only servers that initially respond with a status code of 403

9

TABLE II: Access bypass results. Each column represents the
number of 2xx results we receive for each respective source IP
address value when we do send a PROXY header. Note that
the “unsuccessful” column represents the hosts that initially
respond with a status code in the 4xx or 5xx range, or with
a connection error.

Header
No Header Unsuccessful 4xx 403

2xx Non-internal IP 5,863 (11,640) 648 (3,430) 211 (953)
2xx 127.0.0.1 6,609 (12,235) 1,041 (3,773) 252 (978)
2xx 10.0.0.10 7,480 (13,107) 1,029 (3,762) 246 (974)
2xx 172.16.0.10 7,660 (13,313) 1,011 (3,754) 235 (961)
2xx 192.168.0.10 5,899 (11,527) 1,027 (3,766) 239 (967)

Forbidden, we achieve a successful bypass on over 200
hosts.

Interestingly, these servers are primarily located in China
(28.5%), US (16.8%), and South Korea (9.1%). Contrary to the
sensitive web pages, these servers are spread across a higher
variety of ASs, though mostly operated by Chinese network
and telecom providers.

Note that we have to limit our analysis of these access
bypass cases to the status codes of the response. As explained
in Section IV, we want to avoid leaking sensitive information
and therefore used a HEAD request to demonstrate the potential
of an access bypass without accessing the corresponding data.

Interestingly, we find that a large portion of our targets
return a non-successful response to the malformed probe.
Table II shows this number in parentheses for each experiment.
This result was later clarified during our responsible disclosure
effort (see Section VIII): after interacting with several system
administrators, they explained that, although returning a 200
OK status code, these pages display an error message. Their
reasoning is that the standard HTTP error codes were not
expressive enough for the error handling of their applications.
Therefore, we mark them as false positives in our results.
Although we are not certain that this is a valid explanation for
all results, we still mark each occurrence as a false positive to
avoid over-reporting on this problem.

Notably, when we try to achieve an access bypass using the
X-Forwarded-For HTTP header field, we only retrieve 25
successful responses. That is, if we spoof the same addresses
for this specific HTTP field we are significantly less successful.
This highlights the novelty of our attack.

D. Honeypot Experiment

To understand whether these misconfigurations are actively
searched for, and abused, by adversaries in the wild, we
set up a honeypot infrastructure identical to the simulation
environment of Section III. Since both our backend servers
require the PROXY header at the start of each connection, any
direct access to them without such a header will result in an
error. The goal of this setup is to capture whether adversaries
attempt to craft a PROXY protocol header, possibly altering
the source IP address field. After running our setup in the wild
for a period of three weeks, we received a total of 156,122
connections, none of which contained the PROXY header.
Any request containing such a header stemmed directly from

our load balancer, showing that attackers are unaware of this
technique and that this is a novel attack vector.

VI. SMTP RESULTS

We perform a large-scale scan on the SMTP protocol,
quasi-identical to our HTTP study, across the IPv4 address
range. We first search for open SMTP ports (port 25) using
ZMap, and launch the same follow-up probes as for HTTP:
one regular probe, five probe with a PROXY header (each
containing a different source IP address value), and one probe
with a malformed header (see Section IV for more details).

We consider a response successful if the received SMTP
status code falls within the 2xx range. This is a conservative
lower bound as we want to avoid cases where the PROXY
header is seen as an error by the SMTP server, but the
server does not abort the connection. From the 9,915,564
hosts with an open port 25, we find 2,332,377 hosts that
respond successfully when presented with a PROXY header
(even though we are not a trusted proxy server). In total,
25,366 hosts do not accept our connection request without
the PROXY header, yet respond successfully when we add
a PROXY header.

Many SMTP servers respond with their domain name
upon an initial connection. Analyzing these domain names,
we encounter 268 instances that are hosted on a .home
TLD. This TLD has been deprecated by ICANN in 2018
due to its ambiguity with internal domain names (i.e., many
organizations using the TLD for their internal network) [18].
As a result, no public domain today can be hosted on the
.home TLD. Therefore, these 268 instances must be within
an internal network. This provides additional proof that we can
use the PROXY protocol to bypass reverse proxies and reach
internal infrastructures.

A. Open Relays

Open relays are mail servers that forward any received
email, regardless of the origin, and without verification. While
this used to be the default mail server behavior on the Internet,
the community soon realized that this mechanism can be
abused by spammers and criminals: using an open relay, an
adversary can impersonate any email address on the Internet,
making it dangerously easy to fool their victims.

Nowadays, open relays rarely occur on the Internet thanks
to the many efforts of spam detectors. Furthermore, it is no
longer the default setting in mailing software to configure the
server as an open relay. Rather, a server will have a specific
IP range from which it will accept email requests. In Postfix,
for example, the default for this is the localhost address
(127.0.0.1).

If an administrator configures their SMTP server behind a
proxy server using the PROXY protocol, they have two options
for checking the origin IP address: using the packet source
IP address, or the source IP address provided in the PROXY
header. In case of the latter, we can spoof the header value, and
fool the origin check of the server. To determine whether this
happens in the wild, we take all hosts that responded with an
error during our scan without the PROXY header, but returned
a successful response when probed using the PROXY header,

10

spoofed with 127.0.0.1 as the source IP address (16,779
hosts in total). For these hosts, we attempt to send an email to
ourselves using again the spoofed source IP address value of
127.0.0.1 in the PROXY header. We send the email using
our private email as the “From” address (which is under the
Microsoft Outlook environment), and our university email as
the destination address (which is hosted by Google Gmail).

In total, we found 373 SMTP servers that successfully
relayed our email without any further access checks
or verification steps. Because of the spoofed value in the
PROXY header, the server treats the SMTP packet as if it
originated from 127.0.0.1 and, hence, does not proceed
with verification checks on the sender address used in the
email. Note that for the malformed probes, we receive again
zero successful responses, showing that the open relays are
indeed due to PROXY header injection and spoofing.

We notice again that the majority of these servers reside
in the US (51.47%), this time followed by France (7.5%).
They are spread across 49 different autonomous systems, all
primarily operated by hosting companies such as Amazon,
UDomain, and Hetzner, among others.

Open Relay Scanners and SMTP Safeguards: Unfortu-
nately, open relay scanners do not test for a bypass using
the PROXY header, leaving all of these servers undetected
by current measures. Normally, open relay detectors actively
scan and detect email servers that enable the delivery of
spoofed emails. In fact, when we tested this methodology
on our own server, our open relay without PROXY protocol
configuration was detected within minutes, and immediately
put on a spam list, demonstrating how quickly open relays
are usually detected. The PROXY protocol circumvents this.
Thus, an adversary can impersonate any email address using
these mail servers, creating a significant security risk. In
Section VIII, we describe our responsible disclosure to the
involved parties.

While the Sender Policy Framework (SPF) check failed in
our experiments, Gmail still accepted all emails. In fact, this
is a common policy among Mail Transfer Agents (MTAs) as
many email servers lack, or have incorrect, SPF configuration.
Denying every email that fails an SPF check can therefore
lead to many false positives. A recent large-scale study has
shown that 44 out of 47 providers deliver emails with failed
SPF checks [3].

Attack Scenario: With the PROXY protocol, an attacker
suddenly obtains access to persistent open SMTP relays,
which can be used for targetted spoofing attacks and phishing
campaigns. We depict in Figure 6 how such an attack might
look like. First, the attacker creates a spoofed email that uses
as the “From” address the email address of the CEO of a
company. Before sending the email to the vulnerable SMTP
server, the attacker establishes a connection with the server
over SMTP, and uses the PROXY protocol to impersonate a
proxy server relaying requests from a client. Moreover, in the
PROXY header, the attacker spoofs the source IP address using
the localhost address (127.0.0.1). When the vulnerable
server parses the PROXY header, it grabs the source IP address
value, and treats the connection as if it were coming from that
source IP address provided in the PROXY header. In our attack
scenario, this means that the server will treat the connection

PROXY TCP4 127.0.0.1 portA IPB 25
From: ceo@acme.com
To: victim@acme.com
…

Vulnerable
E-mail Server

(using IPB)
Proxy

Attacker
(using IPA)

Victim

From: ceo@acme.com
To: victim@acme.com
…

Internal
Network

Fig. 6: Example of an attack using PROXY protocol spoofing
over SMTP. During the connection setup, the attacker includes
a PROXY header where the source IP address value is spoofed
to 127.0.0.1. The vulnerable server will then treat the
connection of the attacker as if it was coming from the IP
address 127.0.0.1 which is the localhost address of the
machine. As such, when the attacker sends a command to send
an email impersonating the CEO of a company, the vulnerable
server will assume it was sent from the server itself, and
will, hence, not validate the credentials of the sending email
address. As a result, the vulnerable server will forward the
email to the victim. The victim will not be able to distinguish
whether the email was sent by the attacker or the actual CEO.
Note that in this figure the vulnerable server resides within
an internal network. This is not a requirement for the attack,
as any vulnerable server will be able to forward the email.
However, our results show that many servers accepting the
PROXY protocol are indeed part of an internal network, as
demonstrated by the many .home hosts.

from the attacker as if it stems from IP address 127.0.0.1.
Because this is the localhost address, the server assumes
the email originates from the SMTP server itself and, therefore,
does not verify the credentials of the sending email address
(ceo@acme.com in our example). As a result, the email is
sent to its intended destination (the victim), after which the
attack is completed. That is, the attacker could successfully
impersonate the email address of ceo@acme.com, and use it
to send a targeted phishing email to its victim. Because these
open relays are persistent, this attack is easy to scale, allowing
the attacker to launch large-scale campaigns. Our study finds
373 vulnerable servers, demonstrating that an attacker can
spread its efforts across multiple servers across the Internet.

VII. SSH RESULTS

We find 21,711,989 hosts listening on port 22, of which
2,343,420 complete a successful handshake when we include
a PROXY header. In 30,882 instances, the host responds with
an error upon receiving a request not containing the PROXY
header, yet returns a successful response when the request
does contain the PROXY header. This shows that the PROXY
protocol is used beyond HAProxy’s known list of supported
software.

We compare the banners returned by each server in our
target set. Servers accepting the PROXY protocol primarily use
Dropbear software (92.0%) whereas servers not responding to
the PROXY protocol tend to favor OpenSSH (51.3%, with

11

Dropbear at 10.3%). We observe no significant difference
with respect to the software versions used in both groups.
That is, both groups have a similar distribution of outdated
versions compared to recent versions. This for Dropbear and
OpenSSH, as well as any other software encountered. Both
groups almost exclusively use SSH version 2, with less than
4% using version 1. We do notice that 20.0% of the servers
responding to the PROXY protocol include a weak cipher suite
(i.e., using Blowfish, DES, or RC4), making them vulnerable
to downgrade attacks. This percentage is lower for regular
servers. where we see only 15.0% advertising weak cipher
suites.

The 30,882 instances that only respond successfully when
presented with a PROXY header could further reveal security
issues on the backend server due to, for example, SSH brute
force attempts caused by potential rate-limit circumvention on
the proxy side. However, we did not pursue any further security
assessment since these could quickly lead to shell access on
the backend infrastructure, which would be against the ethical
considerations of this research.

VIII. RESPONSIBLE DISCLOSURE

Because our measurement study exposed several security
issues of PROXY protocol usage in the wild, we made a
dedicated effort to contact the affected parties. For the exposed
monitoring platforms, home automation systems, IoT control
panels, etc., described in Section V, we performed a whois
lookup on the respective IP addresses to find a contact for
responsible disclosure. For each contact, we sent an email,
explaining our experiments and the findings. Furthermore, we
asked to be brought in contact with the administrator(s) respon-
sible for the affected server. We followed the same procedure
for servers affected by an access bypass (Section V-C) and
servers exposing an SMTP open relay (Section VI). In case
no direct contact was found we contacted the ISP of the
IP address. We also reached out to Apache’s security team
regarding their default setting of interpreting the source IP
address in the PROXY header as the actual IP address, without
any accept/blocklist measure in place for trusted proxy servers.

From the whois records, we found 301 unique email
addresses to contact. 16 emails could not be delivered due
to the email address being invalid. From the successfully de-
livered emails, we received back 24 responses: 7 regarding the
exposed platforms, 6 for the access bypass, and 11 regarding
the open SMTP relays. Among the affected parties were:
a university, a security company, some hosting companies,
a major Australian ISP, and some government institutions.
This shows that this misconfiguration issue can occur within
prominent organizations.

All organizations confirmed the vulnerability. We helped
all of them with remediating the issue, and received a bounty
offer from 4 of them.

IX. DISCUSSION

The security implications shown in this paper are not a
direct cause of the PROXY protocol’s design. Rather, they
root in implementation details from software vendors, and/or
misconfigurations of the system administrator. We discuss
further implications of these security issues and how they can
be mitigated.

A. False Sense of Security

A crucial difference between the PROXY header and the
HTTP X-Forwarded-For header lies in how their absence
is handled rather than their presence. When a backend server
expects a PROXY header, but receives a request without it, the
backend server will discard the request, and return an error. For
the X-Forwarded-For header, servers will generally still
accept the request in case the header is not present. As such,
the system administrator cannot just hide sensitive content
behind a proxy server by relying on the X-Forwarded-For
header, since the backend server is still reachable. When an
administrator enables the PROXY protocol, however, they
might assume their content is exclusively accessible through
the proxy server, since a direct request to the backend server
will result in an error. Our experiments show that this is
not the case and that proxy servers can be bypassed by
injecting a PROXY header into the request. The PROXY
protocol can therefore provide a false sense of security, letting
administrators operate under the assumption that their backend
servers are not reachable without going through the proxy.

B. Mitigation and Lack of Standardization

Openly accepting PROXY protocol headers from any client
is the core of the security issues uncovered in this paper.
HAProxy advises users of the PROXY protocol to maintain
a list of trusted proxy servers and only accept a PROXY
header if it is sent by a proxy server on that list. However,
we have seen in Section III that neither NGINX nor Apache
has any configuration option in place to maintain such a list.
It is therefore up to the system administrator to manually
implement and configure such a list (e.g., at the firewall level)
to avoid accepting PROXY headers from arbitrary clients.
If this is not implemented properly, or simply omitted, any
client’s PROXY header will be accepted by the backend server.
Having a default way of implementing such a proxy server list
would fully mitigate any of the security concerns discovered
by our research.

In general, we argue that the PROXY protocol in itself
lacks a clear standardization. We believe this can be solved
by releasing an official Request for Comment (RFC) for
the PROXY protocol. Doing so would not only increase the
awareness around the protocol but also increase community
involvement, leading to better support and standardization.

X. RELATED WORK

To the best of our knowledge, we are the first to study
the HAProxy PROXY protocol. Nonetheless, our study relates
directly to previous attacks on proxy infrastructures, specifi-
cally those involving HTTP header manipulation. Furthermore,
we draw parallels between our work and research done on
misconfigurations.

A. Proxy Server Security and HTTP Header Manipulation

Mirheidari et al. [23], [24] have shown that Content De-
livery Network (CDN) proxies can be manipulated to cache
the personal information of a user, which can then later be
retrieved from the CDN cache by the attacker. This attack
is known as Web Cache Deception (WCD), and the authors
demonstrate through a large-scale measurement study how

12

feasible the attack is in the wild, providing several cases where
an adversary could have stolen security tokens.

Another caching attack is the Cache-Poisoned Denial of
Service (CPDoS) by Nguyen et al. [27]. In CPDoS, the attacker
makes use of HTTP headers to trick the caching proxy into
storing error pages from the origin server instead of the actual
content of the website. This causes a client to receive an error
(such as a 400 Bad Request) instead of the requested web
page that does exist on the website’s backend server.

Manipulating HTTP headers goes beyond the realm of
CDN caching servers [34]. Mendoza et al. studied header
inconsistencies between a website’s desktop version versus its
mobile variant [22]. In their large-scale measurement study
concerning 70,000 websites, the authors identify the secu-
rity and privacy implications of these header inconsistencies,
demonstrating how an attacker could exploit them in the wild.

A common attack vector that uses HTTP header manipula-
tions is request smuggling [15]. With HTTP request smuggling,
an attacker crafts a specific HTTP request that will be inter-
preted differently by the proxy server and the backend server.
Concretely, the goal of the attacker is to send multiple requests
that will be interpreted as one request by the proxy. The
additional (i.e., “smuggled”) requests are hence not checked
by the proxy, allowing the attacker to bypass any access
control checks on the proxy side. This happens by altering the
Content-Length and/or Transfer-Encoding HTTP
header fields, which can be interpreted differently depending
on which proxy software and backend software is in place.
Jabiyev et al. [20] developed a pipeline to test several server
combinations for discrepancies in header interpretation that
could lead to HTTP request smuggling. They use differential
fuzzing and report on a measurement study revealing 23
vulnerable websites in the wild.

Another HTTP header manipulation technique is the so-
called “Host of Troubles” attack by Chen et al. [5]. In this
attack, the Host header field is specifically crafted such that
the proxy and the backend server treat the value differently.
This can lead to cache poisoning or filter bypassing. Finally,
Guo et al. demonstrate how CDN edge servers can be coordi-
nated to launch a targeted DDoS attack [16].

B. Misconfiguration Research

The security issues described in this paper are not a result
of the PROXY protocol’s properties, but rather of miscon-
figured infrastructures. The impact of misconfigurations on
security has been studied before, and we notice some parallels
with the security issues we expose in this paper. Dietrich
et al. surveyed several system administrators on the process
and origin of security misconfigurations, and how to handle
them [12]. Also at scale, we see vulnerabilities measured that
originate from a misconfiguration. Continella et al. [10] discov-
ered several S3 cloud storage services from Amazon being un-
intentionally exposed to the public, and in DNS, misconfigured
cycles could lead to server amplification attacks [26]. Pletinckx
et al. designed a methodology to detect “orphaned web pages”
at scale, which are misconfigured web pages that are no longer
linked to by the website hosting them [29]. They show that
orphaned web pages tend to be more vulnerable to common
attacks such as Cross-Site Scripting (XSS) and SQL Injection.

Related to access control, the Baaz tool has been successful
at finding access control misconfigurations in file servers [11].
The tool statically analyzes access control lists and identifies
inconsistencies among user permissions. Recently, Rahman et
al. [30] performed a large-scale analysis of 2,039 Kubernetes
manifests to detect security-related misconfigurations. They
found over 1,000 misconfigurations, split over 11 security
categories. Similarly, Spahn et al. [31] measured exposed
container orchestration tools on the Internet, and performed a
longitudinal honeypot experiment to investigate attacker trends
on Docker, Kubernetes, and common workflow tools.

XI. CONCLUSION

In this paper, we performed the first Internet-scale mea-
surement study of the PROXY protocol and its security impli-
cations. Although backend servers should only accept PROXY
protocol information from trused proxy servers, we found more
than 170,000 hosts that accept PROXY protocol data from an
arbitrary client over HTTP (2,332,377 hosts over SMTP and
2,343,420 hosts over SSH). In over 500 instances, this exposed
sensitive web pages, and provided access to IoT monitoring
services or smart home control panels, enabling us to regulate
household devices without access credentials. Furthermore, we
demonstrated how injecting a PROXY header can bypass on-
path proxies (and their security mechanisms), allowing a client
to directly communicate with the backend server. We found
more than 10,000 instances over HTTP in which we can abuse
this technique to bypass access control checks by spoofing the
source IP address in the PROXY header.

The issues explained in this paper go beyond HTTP, mak-
ing this a multi-protocol problem. Using PROXY header injec-
tion, we bypassed 25,366 proxy servers over SMTP and 30,882
proxy servers over SSH. Moreover, by spoofing PROXY
header values over SMTP, we turned 373 email servers into
open relays, allowing us to send arbitrary emails from any
email address. These servers are currently undetectable by
open relay scanners as these scanners do not use the PROXY
protocol during their probes, making these open relay servers
persistent on the Internet. Finally, we detailed our responsible
disclosure procedures and gave recommendations on how to
mitigate the identified security misconfigurations.

ACKNOWLEDGMENT

The authors would like to thank Don Kileen for his
amazing support during the scans. This material is based upon
work supported by the National Science Foundation under
grant no. 2229876 and is supported in part by funds provided
by the National Science Foundation, by the Department of
Homeland Security, and by IBM. Any opinions, findings, and
conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views
of the National Science Foundation or its federal agency and
industry partners.

REFERENCES

[1] Akamai, “About application load balancer,”
https://techdocs.akamai.com/cloudlets/docs/what-app-load-balancer,
2021.

[2] M. Bailey, D. Dittrich, E. Kenneally, and D. Maughan, “The menlo
report,” IEEE Security & Privacy, vol. 10, 2012.

13

[3] B. Blechschmidt and B. Stock, “Extended hell(o): A comprehensive
large-scale study on email confidentiality and integrity mechanisms
in the wild,” in 32nd USENIX Security Symposium, USENIX Security
2023, Anaheim, CA, USA, August 9-11, 2023. USENIX Association,
2023.

[4] M. S. Charikar, “Similarity estimation techniques from rounding
algorithms,” in Proceedings of the Thiry-Fourth Annual ACM
Symposium on Theory of Computing, ser. STOC ’02. New York,
NY, USA: Association for Computing Machinery, 2002. [Online].
Available: https://doi.org/10.1145/509907.509965

[5] J. Chen, J. Jiang, H. Duan, N. Weaver, T. Wan, and V. Paxson,
“Host of troubles: Multiple host ambiguities in http implementations,”
in Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’16. New York, NY, USA:
Association for Computing Machinery, 2016.

[6] Cloudflare, “mmproxy,” https://github.com/cloudflare/mmproxy, 2022.

[7] ——, “The cloudflare global network,”
https://www.cloudflare.com/network/, 2023.

[8] ——, “How cloudflare works,” https://developers.cloudflare.com/-
fundamentals/concepts/how-cloudflare-works/, 2023.

[9] ——, “What is a reverse proxy? — proxy servers explained,”
https://www.cloudflare.com/learning/cdn/glossary/reverse-proxy/, 2023.

[10] A. Continella, M. Polino, M. Pogliani, and S. Zanero, “There’s a hole
in that bucket! a large-scale analysis of misconfigured s3 buckets,”
in Proceedings of the 34th Annual Computer Security Applications
Conference, ser. ACSAC ’18. New York, NY, USA: Association for
Computing Machinery, 2018.

[11] T. Das, R. Bhagwan, and P. Naldurg, “Baaz: A system for detecting
access control misconfigurations,” in 19th USENIX Security Symposium,
Washington, DC, USA, August 11-13, 2010, Proceedings. USENIX
Association, 2010.

[12] C. Dietrich, K. Krombholz, K. Borgolte, and T. Fiebig, “Investigat-
ing system operators’ perspective on security misconfigurations,” in
Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’18. New York, NY, USA:
Association for Computing Machinery, 2018.

[13] Z. Durumeric, E. Wustrow, and J. A. Halderman, “Zmap: Fast internet-
wide scanning and its security applications,” in Proceedings of the 22th
USENIX Security Symposium, Washington, DC, USA, August 14-16,
2013. USENIX Association, 2013.

[14] T. Fiebig, “Crisis, ethics, reliability & a measurement.network: Reflec-
tions on active network measurements in academia,” in Proceedings
of the Applied Networking Research Workshop, ANRW 2023, San
Francisco, CA, USA, 24 July 2023. ACM, 2023.

[15] M. Grenfeldt, A. Olofsson, V. Engström, and R. Lagerström, “Attacking
websites using HTTP request smuggling: Empirical testing of servers
and proxies,” in 25th IEEE International Enterprise Distributed Object
Computing Conference, EDOC 2021, Gold Coast, Australia, October
25-29, 2021. IEEE, 2021.

[16] R. Guo, J. Chen, Y. Wang, K. Mu, B. Liu, X. Li, C. Zhang, H. Duan,
and J. Wu, “Temporal CDN-Convex lens: A CDN-Assisted practical
pulsing DDoS attack,” in 32nd USENIX Security Symposium (USENIX
Security 23). Anaheim, CA: USENIX Association, Aug. 2023.

[17] M. Henzinger, “Finding near-duplicate web pages: A large-scale
evaluation of algorithms,” in Proceedings of the 29th Annual
International ACM SIGIR Conference on Research and Development
in Information Retrieval, ser. SIGIR ’06. New York, NY, USA:
Association for Computing Machinery, 2006. [Online]. Available:
https://doi.org/10.1145/1148170.1148222

[18] ICANN, “Approved board resolutions — regular meeting of the icann
board 4 february 2018,” https://www.icann.org/en/board-activities-and-
meetings/materials/approved-board-resolutions-regular-meeting-of-the-
icann-board-04-02-2018-en#2.c, 2018.

[19] L. Izhikevich, R. Teixeira, and Z. Durumeric, “LZR: Identifying unex-
pected internet services,” in 30th USENIX Security Symposium (USENIX
Security 21). USENIX Association, Aug. 2021.

[20] B. Jabiyev, S. Sprecher, K. Onarlioglu, and E. Kirda, “T-reqs: Http
request smuggling with differential fuzzing,” in Proceedings of the 2021
ACM SIGSAC Conference on Computer and Communications Security,

ser. CCS ’21. New York, NY, USA: Association for Computing
Machinery, 2021.

[21] G. S. Manku, A. Jain, and A. Das Sarma, “Detecting near-duplicates
for web crawling,” in Proceedings of the 16th International Conference
on World Wide Web, ser. WWW ’07. New York, NY, USA:
Association for Computing Machinery, 2007. [Online]. Available:
https://doi.org/10.1145/1242572.1242592

[22] A. Mendoza, P. Chinprutthiwong, and G. Gu, “Uncovering http header
inconsistencies and the impact on desktop/mobile websites,” in Pro-
ceedings of the 2018 World Wide Web Conference, ser. WWW ’18.
Republic and Canton of Geneva, CHE: International World Wide Web
Conferences Steering Committee, 2018.

[23] S. A. Mirheidari, S. Arshad, K. Onarlioglu, B. Crispo, E. Kirda, and
W. Robertson, “Cached and confused: Web cache deception in the wild,”
in 29th USENIX Security Symposium, USENIX Security 2020, August
12-14, 2020, 2020.

[24] S. A. Mirheidari, M. Golinelli, K. Onarlioglu, E. Kirda, and B. Crispo,
“Web cache deception escalates!” in 31st USENIX Security Sympo-
sium, USENIX Security 2022, Boston, MA, USA, August 10-12, 2022.
USENIX Association, 2022.

[25] R. Moskowitz, D. Karrenberg, Y. Rekhter, E. Lear, and
G. J. de Groot, “Address allocation for private internets,”
https://datatracker.ietf.org/doc/html/rfc1918, 1996.

[26] G. C. M. Moura, S. Castro, J. Heidemann, and W. Hardaker, “Tsuname:
Exploiting misconfiguration and vulnerability to ddos dns,” in Proceed-
ings of the 21st ACM Internet Measurement Conference, ser. IMC ’21.
New York, NY, USA: Association for Computing Machinery, 2021.

[27] H. V. Nguyen, L. L. Iacono, and H. Federrath, “Your cache has fallen:
Cache-poisoned denial-of-service attack,” in Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security,
CCS 2019, London, UK, November 11-15, 2019. ACM, 2019.

[28] OWASP, “Log injection,” https://owasp.org/www-
community/attacks/Log Injection, 2023.

[29] S. Pletinckx, K. Borgolte, and T. Fiebig, “Out of sight, out
of mind: Detecting orphaned web pages at internet-scale,” in
Proceedings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’21. New York, NY, USA:
Association for Computing Machinery, 2021. [Online]. Available:
https://doi.org/10.1145/3460120.3485367

[30] A. Rahman, S. I. Shamim, D. B. Bose, and R. Pandita, “Security
misconfigurations in open source kubernetes manifests: An empirical
study,” ACM Trans. Softw. Eng. Methodol., may 2023.

[31] N. Spahn, N. Hanke, T. Holz, C. Kruegel, and G. Vigna, “Container
Orchestration Honeypot: Observing Attacks in the Wild,” in 26th Inter-
national Symposium on Research in Attacks, Intrusions and Defenses
(RAID 23), October 2023.

[32] H. Technologies, “The proxy protocol,”
https://www.haproxy.org/download/1.8/doc/proxy-protocol.txt, 2020.

[33] ——, “Use the proxy protocol to preserve a client’s ip address,”
https://www.haproxy.com/blog/use-the-proxy-protocol-to-preserve-a-
clients-ip-address, 2022.

[34] G. Tyson, S. Huang, F. Cuadrado, I. Castro, V. C. Perta, A. Sathiaseelan,
and S. Uhlig, “Exploring http header manipulation in-the-wild,” in
Proceedings of the 26th International Conference on World Wide Web,
ser. WWW ’17. Republic and Canton of Geneva, CHE: International
World Wide Web Conferences Steering Committee, 2017.

[35] F. Valeur, G. Vigna, C. Kruegel, and E. Kirda, “An anomaly-driven
reverse proxy for web applications,” in Proceedings of the 2006 ACM
Symposium on Applied Computing, ser. SAC ’06. New York, NY,
USA: Association for Computing Machinery, 2006.

14

APPENDIX

We configure 3 Ubuntu Server 22.04.03 Virtual Machines
(VMs):

• A backend server running NGINX 1.18.0, hosting a
web page. Static IP address: 192.168.56.21

• A backend server running Apache 2.4.52, hosting a
web page. Static IP address: 192.168.56.22

• A reverse proxy server running HAProxy 2.4.22, func-
tioning as a load balancer for the two backend servers.
Static IP address: 192.168.56.10

f r o n t e n d h t t p − i n
b ind * :80
d e f a u l t b a c k e n d s e r v e r s

backend s e r v e r s
b a l a n c e r o u n d r o b i n
s e r v e r s1 1 9 2 . 1 6 8 . 5 6 . 2 1 : 8 0 send − proxy
s e r v e r s2 1 9 2 . 1 6 8 . 5 6 . 2 2 : 8 0 send − proxy

Listing 3: HAProxy configuration example for a load balancing
setup. By setting the send-proxy argument, we make sure
that the load balancer adds a PROXY header during the
connection setup with the backend server.

s e r v e r {
l i s t e n 80 p r o x y p r o t o c o l ;
Othe r c o n f i g u r a t i o n s . . .

}

Listing 4: NGINX web server configuration example. By
setting the proxy_protocol argument, the server expects
a PROXY header to be present during each connection setup
with the web server.

<V i r t u a l H o s t * :80>
Some c o n f i g u r a t i o n s . . .
R e m o t e I P P r o x y P r o t o c o l On
Othe r c o n f i g u r a t i o n s . . .

< / V i r t u a l H o s t>

Listing 5: Apache web server configuration example. By
setting RemoteIPProxyProtocol to ON, the server
expects a PROXY header to be present during each connection
setup with the web server.

15

