
Not your Type! Detecting Storage Collision
Vulnerabilities in Ethereum Smart Contracts

Nicola Ruaro, Fabio Gritti, Robert McLaughlin, Ilya Grishchenko, Christopher Kruegel, Giovanni Vigna
University of California, Santa Barbara

{ruaronicola, degrigis, robert349, grishchenko, chris, vigna}@ucsb.edu

Abstract—In recent years, the Ethereum blockchain has seen
significant growth and adoption. One of the key factors of its
success is the possibility to run immutable programs known
as smart contracts. Smart contracts allow for the automatic
manipulation of digital assets and play a central role in the
new decentralized finance (DeFi) ecosystem. With the growth
of DeFi, the interactions between smart contracts have become
increasingly complex, enabling advanced financial protocols and
applications. However, bugs in smart contract interactions are
also a common cause of critical vulnerabilities that result in
considerable financial losses.

In this paper, we study and detect a type of cross-contract
vulnerability known as a storage collision. A smart contract uses
storage to persistently store its data on the blockchain. Typically,
each contract has its own separate storage. However, it is also
possible that two smart contracts share their storage (using
a delegate call). Unfortunately, when these two contracts have
different understandings of the types/semantics of their shared
storage, a storage collision vulnerability can occur. This may lead
to unexpected behavior such as denial of service (frozen funds),
privilege escalation, and theft of financial assets.

To detect and investigate the impact of storage collision
vulnerabilities at scale, we propose CRUSH, a novel analysis
system that discovers these flaws and synthesizes proof-of-concept
exploits. We leverage CRUSH to perform a large-scale analysis of
14,237,696 smart contracts deployed on the Ethereum blockchain
since its genesis. CRUSH identifies 14,891 potentially vulnerable
contracts and automatically synthesizes an end-to-end exploit
for 956 of them. Our system uncovers more than $6 million of
novel, previously unreported potential financial damage caused by
storage collision vulnerabilities.

I. INTRODUCTION

Ethereum [20] is a global, decentralized platform that uses
a blockchain to enable both the transfer of its native currency,
ETH [21], and the deployment of programs called smart
contracts. As opposed to Bitcoin [44], which is mainly used
as a decentralized ledger for its native cryptocurrency [13],
Ethereum provides a more flexible and programmable alter-
native, allowing developers to build and deploy decentralized
applications (dApp). During recent years, the market capital-
ization of Ethereum has considerably increased, becoming the
second largest chain by market capitalization ($224 billion at
the time of writing) [6]. This exceptional growth has been

driven by the excitement around a new form of blockchain-
based finance known as DeFi (i.e., decentralized finance) [19].

Smart contracts are programs implemented on top of the
Ethereum Virtual Machine (EVM) [59] and hosted on the
blockchain. Smart contracts are executed on-demand by block-
chain users, and their execution commonly involves the mod-
ification of their persistent storage, the transfer of funds, and
the invocation of other contracts’ functionality. For example,
when a blockchain developer deploys a smart contract that
automates the governance of a new financial asset (e.g., a new
cryptocurrency), users can directly interact with the contract’s
logic to manage their holdings. Such a mechanism creates a
trustless environment with increased transparency, where the
governance logic is clearly defined, public, and immutable.

Complex financial protocols commonly involve coordi-
nated interactions among several smart contracts. For instance,
a smart contract may consult an on-chain oracle contract [10]
to access the current currency exchange rates for USD-EUR,
decide to exchange cryptocurrency by interacting with a de-
centralized exchange (DEX) [14], and use the proceeds to
take out a loan [27]. These interactions drastically expand the
contract’s functionality and allow for the creation of sophisti-
cated dApps. However, these interactions come at the cost of
increased complexity and a much wider attack surface. Zhou
et al. [63] estimate that between April 2018 and April 2022,
DeFi protocols suffered from attacks that resulted in the loss of
more than 3 billion dollars, making smart contract vulnerability
hunting a hot topic in both industry and academia [8], [9], [15],
[30], [35], [36], [38], [40], [43], [47], [50].

An important type of interaction between contracts is via
delegation. When a source contract invokes a delegate call to
a destination contract, the destination contract has direct read-
and-write access to the source contract’s underlying storage
data. In practice, this mechanism is used either when one
is interested in including an external contract as a third-
party library or, most commonly, when developers want to
leverage the proxy pattern [45] to enable the upgradeability of
a contract’s code. In these cases, the two interacting contracts
both operate on a single, shared underlying persistent storage,
potentially leading to a security issue known as a storage
collision vulnerability.

A storage collision occurs when two contracts read and
write the same underlying storage slot (variable), but they
have different understandings regarding the data stored in that
slot (e.g., different types). For example, one contract might
write an integer value to a specific storage slot, whereas the
other accesses the same storage slot as a Boolean value.

Network and Distributed System Security (NDSS) Symposium 2024
26 February - 1 March 2024, San Diego, CA, USA
ISBN 1-891562-93-2
https://dx.doi.org/10.14722/ndss.2024.24713
www.ndss-symposium.org

Not surprisingly, such (colliding) accesses can lead the two
contracts to operate on unexpected values. This can result in
abnormal behavior and security vulnerabilities. In fact, stor-
age collision vulnerabilities have been previously exploited,
causing extensive damage and loss of funds. For example,
the decentralized music platform AUDIUS [3] was attacked
in July 2022 and lost more than 6 million dollars [17] due
to a storage collision vulnerability. More specifically, a type
misinterpretation (integer to Boolean) of a specific storage slot
disabled an important security check in one of their contracts.
This eventually let the attacker re-initialize the owner of the
AUDIUS protocol and seize control of their treasury.

Storage collision vulnerabilities are often easy to overlook
without a deep understanding of both the low-level storage
operations in the EVM and the storage layout of all the
contracts involved. Currently, the most effective way to pre-
vent storage collision vulnerabilities is to rely on compiler
warnings. Unfortunately, such warnings are only raised when
using certain development frameworks, such as Truffle [55].
Moreover, for these compile-time warnings to be complete, it
is essential to know the source code of all contracts that will
be used – and have been used – in a delegation operation.
In practice, this is not always possible, and, therefore, such
warnings are not always effective.

To address the limited scope of such warning mechanisms,
we implement CRUSH, a system that can identify storage
collision vulnerabilities and automatically synthesize a proof-
of-concept end-to-end exploit against a vulnerable contract.
To the best of our knowledge, CRUSH represents the first
systematic approach to detect storage collision vulnerabilities.

In summary, we make the following contributions:

● We describe a technique to automatically identify groups
of contracts that share the same underlying storage by
observing their interactions on-chain.
● We propose and implement CRUSH, a novel approach

that leverages symbolic execution and program slicing to
detect and exploit storage collisions among such contract
groups.
● We evaluate CRUSH over more than 14 million smart

contracts on the Ethereum blockchain, detecting 14,891
potentially vulnerable contracts, and automatically gen-
erating a proof-of-concept attack for 956 of them. We
estimate the potential financial damage to be over $12
million, with more than $6 million in previously unre-
ported attack opportunities.

In the spirit of open science, we share our dataset upon request,
and open-source CRUSH.

II. BACKGROUND

A. Smart Contracts

Smart contracts are programs, usually written in a
high-level programming language such as Solidity [53] or
Vyper [54], and then compiled into EVM bytecode. The
bytecode is then deployed on the Ethereum blockchain and
executed on-demand by the Ethereum Virtual Machine (EVM).
Contracts execute when a user (or, more precisely, an exter-
nally owned account) invokes one of their functions. Prac-
tically, a user signs and sends a transaction to the contract

along with input data (i.e., calldata), the EVM interprets the
transaction, and the smart contract code is executed. Contracts
use two forms of temporary storage to hold and manipulate
ephemeral data during their execution: addressable memory
and a stack. In addition, contracts use one form of persistent
storage, simply referred to as “storage,” which is made per-
manent on the blockchain at the end of each transaction. In
the following paragraphs, we describe the dynamics of smart
contract execution, and the interplay of calldata, storage, stack,
and memory.

B. Smart Contract Interactions

In the Ethereum blockchain, transactions involving smart
contracts can be of two types. External transactions – or
simply “transactions” – are generated by any externally-owned
account (EOA) that interacts with a contract on the blockchain.
On the other hand, internal transactions are generated when
a smart contract directly calls another contract’s functions.
To fully understand contract interactions in the Ethereum
blockchain, one must first understand the dynamics of such
function calls.

Public Functions. A smart contract’s bytecode executes as a
single monolithic blob of code, with jump instructions direct-
ing the control flow. Public functions serve as entry points
for contract execution and play a crucial role in understanding
a smart contract’s operation. A transaction’s calldata encodes
public function calls as a sequence of bytes, which consist of a
function selector (4 bytes) plus the function’s arguments. The
function selector is generated by hashing the target function’s
signature with the keccak256 hashing function [58] and
truncating its output after the first four bytes. For exam-
ple, the function selector for initialize(address) is
c4d66de8. The function selector is followed by a byte-string
that represents the function arguments, which are encoded
according to the compiler convention [53], [54]. Compiled
contracts start the execution at a generated “dispatcher” rou-
tine. The dispatcher first extracts the function selector and,
if the extracted function selector matches one of the public
functions, the contract jumps to the function’s start. The
function then parses its arguments and executes the function
body. Otherwise, if a matching function selector is not found,
the dispatcher executes a fallback method [16].

Contract Communication Opcodes. Public functions can be
directly invoked by a user, or invoked by a contract through
one of the following EVM opcodes:

(1) CALL is the most basic function call and allows to both
invoke a function of a target contract and transfer ETH.

(2) STATICCALL invokes a function in the target contract in
a view-only fashion – that is, preventing any modifications
to the storage of the target contract and of any contract
that is called by the target itself.

(3) DELEGATECALL allows a contract to call another
contract’s functions as if they were its own – that is, the
code of the called contract is directly operating on the
caller’s persistent storage and uses its ETH balance1.

1The EVM specification also includes a CALLCODE opcode, which provides
a functionality equivalent to DELEGATECALL. We will not discuss its use, as
it has been deprecated in favor of DELEGATECALL [18].

2

0x0000000000000000000000ac51066d7bec65dc4589368da368b212745d63e801

0x0001

0x0042

...

SLOT ID

0x0
0x1

k-256(0x1) + index

A
B

D

E

VALUE

...

0x0043

0x00 C0x2

k-256(key . 0x2)

Fig. 1: The storage layout of the Logic contract in Figure 2. In A the Boolean variable initialized (01) packed in the
same slot with the address variable admin. In B the BASE slot of the array variable artworkIDs, and in D one of its
elements. Finally, in C the BASE slot of the artworkHolders mapping, and in E one of its elements.

Due to the nature of storage collision vulnerabilities, we
focus exclusively on interactions that arise from the use of
DELEGATECALL and ignore interactions that arise from the
use of CALL and STATICCALL.

C. Contract Storage

All the state variables – or persistent variables – of a
smart contract reside in the contract’s storage. A contract’s
storage is a large array organized into slots that have a size
of 32 bytes (256 bits), and each slot is identified by a unique
index that ranges from 0 to 2256 − 1 [59]. The storage slot
index for each given state variable must be computed in a
deterministic way to ensure consistent access to the storage
data. In fact, the layout of the state variables in such storage
slots is determined by the compiler, which takes into account
the variable’s order of declaration2 in the source code. While
the following paragraphs describe the storage layout choices of
the Solidity [53] compiler, we observe that equivalent choices
apply to other compilers (e.g., Vyper [54]).

Fixed-size variable types. Basic types such as uint (32
bytes), address (20 bytes), and bool (1 byte) are stored
contiguously in 32-byte slots, starting from slot 0x0. It is
important to note that multiple contiguous items that need
less than 32 bytes are packed into a single storage slot for
compactness, according to the following rules:

● The first item in a storage slot is always aligned toward
the least significant bytes.
● Fixed-size types use only as many bytes as are necessary

to store them.
● If a variable does not fit the remaining part of a storage

slot, it is stored in the next storage slot.

Figure 1 shows an example of such a packed layout resulting
from the compilation of the Logic contract in Figure 2 (the
Logic contract starts at Line 16). Note how the variable
initialize (bool, Line 17 in Figure 2) and admin
(address, Line 18) are packed together in slot 0x0 A as
they require together less than 32 bytes of space.

2For contracts that use inheritance, their subclasses are first linearized [5]
as it is typical in other object-oriented programming languages [29], and this
determines the order of the variable’s declarations.

Dynamic-size variable types. Dynamic types such as ar-
rays and mappings are always stored in a new slot (the
BASE slot), and their elements are stored according to the
following rules:

● The BASE slot stores the length of the array, or, in the
case of a mapping, it is left unused.
● Each array element (with index: INDEX) is stored at the

slot keccak256(BASE)+INDEX.
● Each element of a mapping (with key: KEY) is stored at

the slot calculated by concatenating KEY and BASE and
using the resulting value as an input for the keccak256
function (i.e., keccak256(KEY.BASE)).

Consider again Figure 1: the BASE slot for the array
artworkIDs (Line 19) is slot 0x1 B and contains the
length of the array (0x1), while its first element (at IN-
DEX=0) is 0x42, and can be found at address kec-
cak256(0x1)+0x0 D . Finally, the BASE slot for the
mapping variable artworkHolders (Line 20) is 0x2 C
and one of its elements (with KEY=key) can be found at
keccak256(key.0x2) E .

To read and manipulate the contract’s storage, the EVM
provides two instructions: SLOAD and SSTORE [59]. The
SLOAD instruction retrieves the value stored at a specified
storage slot, while the SSTORE instruction updates the value
at a given storage slot with a new value. Note that both SLOAD
and SSTORE always read/write a whole 32-byte storage slot.

When multiple variables are packed within the same stor-
age slot, the relevant variable being accessed is extracted via a
bit-masking procedure, which is transparently generated by the
compiler. For instance, to extract the initialized variable
from slot 0x0, the entire 32-byte value is first read and then
masked with the value 0xff to obtain 0x01.

III. MOTIVATION

Storage plays a vital role in a smart contract’s life cy-
cle, allowing data persistence across multiple transactions. In
Ethereum, a contract and its storage are inextricably linked.
That is, the storage associated with one contract cannot be
simply transferred to another smart contract. Moreover, smart

3

1 contract Proxy {
2 uint visits; // storage slot [0x0]
3 [..]
4 address LOGIC; // storage slot [ERC-1967]
5

6 constructor() {
7 LOGIC = 0x[..];
8 LOGIC.initialize();
9 visits = 0;

10 }
11 fallback() external {
12 LOGIC.delegatecall(msg.data);
13 }
14 }
15

16 contract Logic {
17 bool initialized; // storage slot [0x0]
18 address admin; // storage slot [0x0]
19 array artworkIDs; // storage slot [0x1]
20 mapping artworkHolders; // storage slot [0x2]
21

22 function initialize() external {
23 require(!initialized);
24 initialized = 1;
25 admin = msg.sender;
26 }
27 function withdraw() external {
28 require(msg.sender == admin);
29 payable(admin).transfer(this.balance);
30 }
31 }

Fig. 2: Simplified Solidity code of the Proxy and Logic
contracts. The interaction of such contracts results in a storage
collision.

contracts are immutable and cannot be changed after deploy-
ment. Unfortunately, immutability makes the governance of a
smart contract challenging. For example, when a bug is found
in a contract, it is not possible to directly upgrade (patch) the
contract’s code. In addition, even if developers deployed a new,
patched version of the contract, its state (storage) would need
to somehow be migrated as well.

To address the need to upgrade contracts, even though they
hold a significant amount of persistent state, developers devised
a clever design approach called a proxy pattern [45]. This
approach achieves upgradability by separating the application’s
logic from its persistent storage and keeping them in two
separate contracts: the contract that contains the logic is
typically referred to as the logic contract, while the persistent
storage is typically held in what is called a proxy contract.
A user interacts with the application by invoking a function
in the proxy contract. The proxy, in turn, forwards this call
to its logic contract. When the application logic needs to be
changed, the developers can simply create a new logic contract,
and then have the proxy forward calls to this new code. This
can be done, for instance, by changing the storage variable in
the proxy contract that holds the address of its active logic
contract. In practice, a proxy contract might have multiple
logic contracts that implement the desired functionality.

The key that makes the proxy pattern work is the DELE-
GATECALL instruction [37]. When the proxy uses DELE-
GATECALL to call a function in the logic contract, the code of
the logic contract operates directly on the storage in the proxy
contract. Hence, when the logic contract changes in case of an
update or patch, the new logic contract has seamless access to
the state of the application (in the proxy).

Intuitively, storage-logic decoupling allows for the con-
tract’s code to be updated without losing its storage state.
This is especially important in complex smart contract systems
and DeFi protocols with many interacting contracts that need
continuous updates.

Storage Collision Vulnerability. Shared storage in general,
and the proxy pattern in particular, can introduce storage
collision vulnerabilities, which we define as follows. Consider
two contracts A and B that, due to a DELEGATECALL, operate
on the same underlying storage. A storage collision occurs
when A and B do not agree about the type (or interpretation) of
the variables in the shared storage. In particular, this collision
occurs when A writes to a certain storage slot, and then B
reads that slot with a different interpretation. We call such a
slot a conflicting storage slot. This escalates to a vulnerability
when a read that operates over a corrupted value can lead to
denial of service, privilege escalation, theft of funds, or other
unexpected behavior.

For ease of exposition, we will refer to a contract that is the
source of a DELEGATECALL as the proxy, and the target of a
DELEGATECALL as the logic. Note that, as a consequence of
this “loose” definition, the terms proxy and logic will capture
more situations than just the proxy pattern. For example, one
contract (proxy) might use another contract (logic) simply as
a library.

Example. To demonstrate a storage collision vulnerability,
we present a simplified example equivalent to the real-world
attack that was launched against the AUDIUS [17] protocol.
Consider Alice, an artist who aims to establish an on-chain
marketplace for selling her NFT artwork. Having learned
about DELEGATECALL, and inspired by the standard proxy
pattern [45], Alice decides to use them to build her own
upgradeable marketplace. She achieves this by creating two
distinct contracts, which we show in Figure 2. The first con-
tract, Proxy, is responsible for storing the marketplace’s state,
which includes information such as the current owners of her
NFTs. The second contract, Logic, contains the marketplace
implementation. By using the proxy pattern, Alice can update
the logic contract without modifying the state. For example,
when Alice is ready to integrate new functionality (e.g., an
auction system), she simply needs to adjust a pointer in her
proxy contract to redirect it to a new logic contract. This
approach allows the logic to be upgraded, ensuring that her
NFT marketplace remains secure and relevant with the latest
functionality.

The Proxy contract code is fairly simple. A construc-
tor routine (Line 6) sets the value of the LOGIC variable
(storage slot ERC-1967 refers to the standard Proxy storage
slot [26]), calls the logic’s initialization routine, and sets the
value of the visits variable. Any other interaction is han-
dled by the fallback function, which delegates (forwards)
function calls to the Logic contract (Line 12). As a result of
this delegation call, both contracts share the same underlying
storage.

The Logic contract has an initialize function
(Line 22) and a withdraw function (Line 27). In the ini-
tialize function, the contract first checks the value of the
variable initialized, stored in storage slot 0x0 (Line 23).
If initialized is already 1, the contract execution fails.

4

Proxy

0x0 | 00000000

0x0 | 0ALICE01

Logic

0x0 | 00EVIL01

 initialize ()

 initialized = 1

 admin = ALICE

 visits = 0

 initialize ()
from
EVIL

 admin = EVIL

 initialized = 1

 withdraw ()
from
EVIL

from
ALICE constructor ()

Fig. 3: Sequence of actions taken to exploit the storage
collision vulnerability.

Otherwise, initialized is set to 1 and the variable admin,
also stored in storage slot 0x0 (but packed at a different
offset as explained in Section II) is set to the caller address,
i.e., the address of the user that initiated the transaction. The
withdraw function transfers all funds to the marketplace
admin, and can only be called from the admin address.

When Alice’s proxy contract performs a DELEGATECALL
to her logic contract, the EVM runs the code of the logic
contract using the storage of the proxy contract. Consequently,
since both contracts work on the same storage, it is crucial
to pay close attention to their storage layout, including the
variables’ types and positions.

In fact, a careful observer immediately notices that vis-
its, initialized, and admin are all stored in the same
storage slot, which is slot 0x0. The Logic and Proxy
contracts interpret storage slot zero in two different ways,
making the contract vulnerable to a storage collision. The
constructor itself first writes initialized and admin (in
the initialization routine of the Logic contract) and then
immediately overwrites them with visits=0 (Line 9). As
a result, an attacker can now call initialize again, which
reads the corrupted value and makes the attacker the market-
place admin. The attacker may then call withdraw and
steal all the contract’s funds. Figure 3 shows the sequence
of actions carried out by the attacker to exploit this storage
collision vulnerability.

In Appendix B, we present a real-world version of this
attack, which is automatically identified by our system.

IV. DETECTION APPROACH

In the following section, we describe our approach to
identifying contracts that suffer from storage collision vul-
nerabilities. As shown in Figure 4, our approach proceeds in
three main stages: component discovery, collision discovery,
and vulnerability discovery.

In the first stage, we analyze on-chain transactions to
extract the source (proxy) and the target (logic) of each
DELEGATECALL. Over time, a proxy contract may make use
of several different logic contracts – perhaps even several
simultaneously. Thus, we also study the activity window
(lifespan) of each proxy and logic contract.

In the second stage, we infer the storage layout of each
proxy and logic contract and detect conflicts between their
layouts. That is, we first perform type analysis to determine
the correspondence between variables – in the form of access
masks – and storage slots. Then, we determine whether there
are any collisions where two distinct contracts access the same
storage slot but with different types.

Finally, in the third stage, we automatically assess the
security impact of each detected collision and synthesize an
exploit.

All the analyses presented in this section are built on
top of the register-based Intermediate Representation (IR)
provided by the Gigahorse framework [33], [35]. In particular,
Gigahorse provides disassembling and lifting capabilities over
a smart contract’s bytecode, without the need for its source
code. Moreover, Gigahorse provides out-of-the-box analysis
results, such as the contract’s control-flow-graph (CFG), which
we leverage to implement our own analyses.

A. Component Discovery

We first analyze on-chain transactions and extract those that
contain a DELEGATECALL. This allows us to discover proxy
and logic contracts that live on the Ethereum blockchain. The
main benefit of using on-chain transactions as the basis for
finding DELEGATECALLs is that it greatly reduces the scope
of our analysis and focuses it on contracts that actually make
use of delegations. In a second step, we use lightweight static
analysis techniques to determine the lifespan of each proxy
and logic contract.

1 Proxy Detection. For every observed on-chain DELE-
GATECALL, we extract the (source, destination) pair of in-
teracting contracts. We represent all observed interactions in a
graph, where nodes represent distinct contracts and a directed
edge corresponds to a DELEGATECALL from the contract
initiating the call to the contract being called.

We then extract from this graph all groups of contracts that
share the same root node. We refer to the root contract as the
proxy contract, and to all the contracts that share the same root
node as its logic contracts. We refer to each group of proxy
and corresponding logic contracts as a COMPONENT.

For example, consider a group of interacting contracts A,
B, C, D, and E. Assume that the root contract A (the proxy):

1) delegates to B, then to C (in the same transaction).
2) delegates to B, then to D (in a different transaction).
3) delegates to B, which in turn delegates to E.

The graph for this COMPONENT would be:

G={(A→B), (A→C), (A→D), (B→E)}.

5

Ethereum
Data Exploits

Proxy
Detection

Type
Inference

Impact
Analysis

Lifespan
Analysis

Collision
Detection

Exploit
Generation

1

2 4

3 5

6

Component
Discovery

Collision
Discovery

Vulnerability
Discovery

Fig. 4: Overview of our approach, implemented in CRUSH. The analysis pipeline follows the order of the circled numbers.

2 Lifespan Analysis. We refer to the blocks between the
creation of a proxy contract and a reference block 3 as the
lifespan of the proxy. If the proxy contract was deleted at
a block that precedes our reference block, we consider such
block to be the end of the proxy lifespan.

Determining the lifespan of a logic contract is more
complicated and requires the analysis of the corresponding
DELEGATECALL in the proxy contract. This is necessary to
determine if an upgrade has changed which logic contract
is active. If an upgrade did occur, we adjust the lifespan of
the logic contract accordingly. More specifically, we use a
lightweight static analysis (backward slicing [57]) to extract
all instructions that affect the target of the DELEGATECALL,
and distinguish between three possible cases:

● When the target is constant, it cannot change over time.
As a result, we consider a constant logic contract to be
“active” for the entire lifespan of the proxy.
● When the target is read from a storage slot, we analyze

how the value of that storage slot changes over time to
infer the lifespan of the referenced contract. For instance,
if the slot containing the target logic stores the address A
at block X, and changes to the value B at block X+100,
the lifespan of A is from X to X+100 – i.e., 100 blocks.
● When the target comes from an external source, for

example, the transaction’s calldata, we conservatively
consider the corresponding logic “active” for the entire
lifespan of the proxy.

In Figure 5, we exemplify a result of the Lifespan Analysis
in the form of a timeline. In particular, we show the lifespan of
a proxy contract A and its four corresponding logic contracts:
B, C, D, and E.

B. Collision Discovery

We now proceed to identify storage collisions among the
contracts within a COMPONENT. In particular, we first infer
the storage layout of each of the contracts involved, and then

3We choose as our reference block the latest block available at the time of
writing (16976770).

Proxy A

Logic B (storage)

Logic D (constant)

Logic E (external)

Logic C (storage)

X X+100 REF

Fig. 5: Example of proxy and the corresponding logic con-
tracts’ timelines. The lifespan of the proxy is from block X
to the reference block REF. In this example, the addresses of
logic B and logic C are saved in a storage slot. In particular,
the storage slot is updated at block X+100 from B to C.
Logic contracts D and E are active for the entire lifespan of
the proxy: The reason is that the address used to call D is a
constant hardcoded in the proxy’s code, while the address for
E is obtained through the function’s calldata.

search for type inconsistencies. In the following, we discuss
our approach to type inference and collision detection.

Similar to other solutions that aim to detect smart contract
vulnerabilities [30], [40], we base our analysis on symbolic
execution of EVM bytecode. Specifically, we leverage a sym-
bolic execution engine equivalent to those proposed in [40]
and [30]. However, we choose to build our symbolic execution
engine on top of Gigahorse [33]. This choice provides us with
the flexibility of adjusting the engine’s internals to the needs
of our approach. Nonetheless, it is possible to implement our
approach on top of any existing symbolic execution frame-
work [15], [30].

3 Type Inference. The goal of our type inference analysis
is to understand the types (Section II-C) associated with each
storage slot used by the contract’s code. This analysis targets
all storage access instructions (i.e., SLOAD and SSTORE) in
a target contract. At a high level, this includes two steps:
(1) we identify the target storage slot accessed by a given
SLOAD/SSTORE, and (2) we identify the types of variables
within the target slot.

6

Intuitively, we observe that while variable types are lost
after compilation, such types can still be inferred from the
contract’s bytecode. To do that, we examine the compiler-
generated access masks that are used to extract the separate
variables packed within the same slot. More precisely, an
access mask determines the exact subset of bytes that refer
to each variable.

Our type inference analysis first needs to understand ex-
actly which slots are used by a contract. To do this, we
examine each SLOAD and SSTORE instruction and determine
which target slot it accesses. Since the target slot value must
be computed before a storage access operation can access it,
we use backward slicing [57] to retrieve all the instructions
involved in its computation. Then, we symbolically execute
these instructions and examine the resulting symbolic variable.
In particular, the target slot can be:

Constant. In this case, the solution for the constraints over the
target slot variable is a constant. Furthermore, since this
type of access is typical for fixed-size types, we learn that
the slot contains one or more fixed-size type(s). While a
simpler technique – for example, constant folding – would
also allow us to infer a constant slot value, our symbolic-
execution-based approach allows us to also handle the two
following cases, which are more complex.

In the form “keccak256(slot)+index”. In this case, the con-
straints over the target slot variable define it as the sum
of a keccak256 hash computation and an arbitrary
index. Since this matches the access pattern of an array
type as discussed in Section II-C, we conclude that the
slot contains a dynamic array type.

In the form “keccak256(key.slot)”. Similar to the previous
case, the constraints over the target slot variable capture
the computation of a keccak256 over the concatenation
of a generic key and the target slot. Since this matches
the access pattern of a mapping type, we conclude that
the slot contains a mapping.

Unknown. If the access type cannot be determined, the slot
type remains unknown. We discuss the impact of type
inference imprecisions in Section VI.

In the case of dynamic-size types (dynamic mapping and
array), we do not need to examine the access mask since such
types occupy one whole storage slot (32 bytes). On the other
hand, for fixed-size types, multiple variables can end up in
the same slot, and we must determine their access masks. For
the sake of this discussion, in the following paragraphs, we
describe our analysis for read accesses (SLOAD). An equivalent
analysis is performed for write accesses (SSTORE).

To determine the access mask of an SLOAD instruction,
we first compute a forward slice [57] and retrieve all the
instructions that operate on the result of the SLOAD. We then
symbolize all 32 individual bytes in the target storage slot and
execute the instructions in the forward slice.

Consider the simplified (4-byte) example in Figure 6. The
forward slice computed for the SLOAD instruction includes
three opcodes: SLOAD, RSHIFT, and AND. First, we start
by symbolizing the 4-byte value fetched by SLOAD – for the
sake of this example, with the value 0xAABBCCDD (Line 1).
Then, we execute the instructions in the forward slice that
operate over such symbolized value, and study their effect.

For instance, in Line 2, when 0xAABBCCDD is manipulated
by the RSHIFT instruction – producing 0x00AABBCC – we
infer that the associated mask is 0xffffff00. Similarly, in
Line 3, the value 0x00AABBCC is manipulated by the AND
instruction, producing 0x0000BBCC. As a result, we infer
that the final mask for this storage access is 0x00ffff00.

0 [INS] [OUTPUT] [MASK]
1 SLOAD 0x1 result:0xAABBCCDD mask:0xffffffff
2 RSHIFT 0x1 result:0x00AABBCC mask:0xffffff00
3 AND 0xffff result:0x0000BBCC mask:0x00ffff00

Fig. 6: Simplified example of masking in EVM bytecode. The
three instructions represent the forward slice that manipulates
the return value of the SLOAD. Every instruction that operates
on the symbolized result of SLOAD (i.e., 0xAABBCCDD)
provides information regarding the mask used to extract the
variable from slot 0x1.

We express the resulting access mask as bytesoffsetnbytes . The
values of nbytes and offset indicate the number of
masked bytes and their position in the mask. For example,
we express the mask 0x00ffff00 as bytes12.

4 Collision Detection. In the previous step, we determined
the storage layouts and access masks for all contracts. In this
step, we perform a pairwise comparison between all contracts
that are part of a COMPONENT, with the goal of detecting
type inconsistencies. Note that a storage collision can happen
between any two contracts that share the same underlying stor-
age. Thus, a collision can happen not only between the logic
contract and the proxy contract, but also between two logic
contracts. For example, given a COMPONENT that comprises
contracts (A, B, C), we analyze all possible pairs, e.g., (A, B),
(A, C), and (B, C).

In particular, for each byte in each storage slot, we check
whether the two contracts use different access masks. For
example, if the least-significant byte in a storage slot is written
as bytes01 in one contract, and read as bytes020 in the second
contract, our analysis reports a potential storage collision. We
refer to such potential storage collisions as storage collision
candidates. We record these as a 3-tuple (A,B, S) where A
and B are the colliding contracts, and S is the colliding slot.

Data types and semantics. The previous paragraphs show
how CRUSH can infer data types from a smart contract’s
bytecode and detect storage collisions. It is worth noting that
for a collision to happen, it is sufficient – but not necessary –
that the two variables have different data types. In fact, it is
possible for the two variables to share the same data type, but
have different semantics (e.g., an unsigned integer value might
represent the total balance in one contract and the number
of users in another one). While it is extremely challenging
(and out of the scope of this paper) to infer the semantics of
contract variables, we observe that one of the primary causes
of semantic-type collisions is the “cascading” collision that
arises from the introduction of a new state variable in a smart
contract’s source code. In our approach, we detect and leverage
this misalignment to reveal semantic-type collisions.

For example, Figure 7 depicts the storage layout of the
contract Logic before and after an upgrade.

7

1 contract Logic {
2 bool initialized; // storage slot [0x0]
3 address admin; // storage slot [0x0]
4 array artworkIDs; // storage slot [0x1]
5 mapping artworkHolders; // storage slot [0x2]
6 [..]
7 }
8

9 contract LogicUpgraded {
10 uint visits; // storage slot [0x0] ←
11 bool initialized; // storage slot [0x1] ↓
12 address admin; // storage slot [0x1] ↓
13 array artworkIDs; // storage slot [0x2] ↓
14 mapping artworkHolders; // storage slot [0x3] ↓
15 [..]
16 }

Fig. 7: Introducing a new state variable in a smart contract can
result in multiple “cascading” collisions.

A developer might think that adding the state variable
visits aligns the storage layout of LogicUpgraded with
the storage layout of the Proxy contract (as shown in
Figure 2). However, introducing the state variable visits
has unintended consequences, and impacts the storage layout
of all following state variables in LogicUpgraded. This
introduces several collisions. For example, in the new contract
LogicUpgraded, the variable visits collides with the
variables initialized and admin of the original Logic
contract. As a result, when LogicUpgraded attempts to
read the variable admin, it is effectively reading the old
variable Logic.artworkIDs, which was previously stored
in Slot 0x1. Additionally, the variables initialized, ad-
min, artworkIDs, and artworkHolders are forced into
a new slot, creating several other collisions between Logic
and LogicUpgraded.

C. Vulnerability Discovery

Consider a tuple (A, B, S) where the contracts A and
B are part of the same COMPONENT and have conflicting
interpretations of storage slot S. We say that the smart contract
B is in a vulnerable state if there exists a WRITE operation in
contract A that can be followed by a USE operation in contract
B, and both operations manipulate the same slot S. Intuitively,
such a sequence of WRITE and USE operations results in the
two contracts (A and B) accessing the same storage slot S
with conflicting types.

To determine the impact of a given storage collision, we
develop an automated technique that 5 analyzes the impact of
the colliding storage slot to discard collisions that are (likely)
not security-relevant, and that 6 analyzes whether the storage
collision candidates are already in a vulnerable state, or can
be brought into a vulnerable state with a WRITE-USE pair of
operations.

5 Impact Analysis. Among all the storage collision can-
didates detected in 4 , we identify those that have a likely
impact on the contracts’ security. In particular, we leverage the
analysis proposed by Brent et al. [9] to identify storage slots
that participate in access control decisions, i.e., that restrict
specific functionality of the contract’s code. We use the results
of this analysis to label all such slots as sensitive. Then, we
label in the same way any other storage slot that can be written
only when executing a restricted section of the contract’s code.

This makes intuitive sense: if a slot can be written only in a
portion of code that is reachable by specific users, this suggests
that it contains important variables, hence, we consider it a
sensitive slot. Furthermore, we label as sensitive (1) all the
read-only slots, for example, the contract creator’s address,
and (2) the slots that store the size of a dynamic array.

The corruption of any sensitive slot can critically com-
promise the functionality of a smart contract. For example,
overwriting the variable that identifies a contract’s administra-
tor compromises its access control policies, and corrupting the
size of a dynamic array can result in an out-of-bound write.
Finally, we study the colliding slots to understand whether
any of them guards an explicit WRITE to a sensitive slot (for
example, the initialized variable in Figure 2). We label
a storage slot as a guarding slot when there exists a sensitive
slot that can only be written after a comparison against the
value of such guarding slot.

At the end of this stage, we discard all collision candidates
that – based on the analysis outlined above – are unlikely to
have a security impact.

6 Exploit Generation. In this final analysis stage, CRUSH
confirms whether it is possible to craft (or observe) a WRITE-
USE pair of operations that brings the storage collision candi-
dates into a vulnerable state. Given a collision candidate (A,
B, S), CRUSH attempts to generate a transaction that WRITES
the sensitive or guarding slot S with the type of contract A,
and a subsequent transaction that USES S with the type of
contract B. If successful, the target contracts (A and B) are
reported as vulnerable.

Attack Preparation. The interactions with all contracts always
happen through the proxy. Thus, if contract A (or B) is the
proxy contract itself, it is fairly simple to craft a transaction
that directly calls (and executes) the proxy’s code. However,
if contract A (or B) is a logic contract, we need to generate a
transaction that reaches the relevant code in the logic contract
through the proxy. As discussed in 2 , we know which
DELEGATECALL instruction in the proxy allows us to call
which particular logic contract. As a result, to interact with
a logic contract, we simply execute the code in the proxy
that reaches the corresponding DELEGATECALL, and then,
we continue executing the code of the target logic contract.

WRITE. First, CRUSH attempts to WRITE the slot S in the
context of contract A. We leverage symbolic execution to
reach any SSTORE instruction in contract A that allows us to
WRITE slot S. In fact, symbolic execution allows us to both
verify the feasibility of such path and to automatically craft a
concrete transaction that can reach such instruction. If this is
unsuccessful, CRUSH inspects the historical on-chain WRITES
to the target storage slot S and checks whether the most recent
WRITE to the slot S happened in the context of contract A,
i.e., the desired write already happened.

Sensitive USE. If slot S is a sensitive slot, CRUSH attempts
to USE the slot in the context of contract B. We use symbolic
execution to reach any SLOAD instruction in contract B that
allows us to USE slot S.

Guarding USE. On the other hand, if slot S is a guarding slot,
CRUSH attempts to WRITE any sensitive slot which is guarded
by slot S (as described previously in 5).

8

2016 2017 2018 2019 2020 2021 2022 2023

Deployment Date (Year)

0

2

4

6

8

10

12

14

C
u

m
u

la
ti

ve
n
u

m
b

er
o
f

p
ro

x
ie

s
(M

il
li
on

s)

Proxies with one logic

Proxies with two logics

Proxies with three or more logics

Total

Fig. 8: Cumulative number of proxies deployed over time.

Exploit Synthesis & Verification. Finally, CRUSH combines
the WRITE and USE operations discovered in the previous
steps to generate a proof-of-concept exploit for the collision
candidate. In particular, we solve the path constraints obtained
from the symbolic execution of contracts A (WRITE) and B
(USE) to obtain the concrete inputs (i.e., the calldata) that
bring the contracts into a vulnerable state. Finally, we use a
concrete implementation of the EVM [28] to verify that the
generated exploits are reproducible on-chain in the lifespan
of contract B. Replaying the generated attacks provides us
with high confidence that our exploits could have successfully
compromised the vulnerable contracts.

If all the above steps succeed, CRUSH reports a verified
storage collision vulnerability.

V. EVALUATION

For all our experiments, we use one server equipped with
512GB of RAM and dual Intel(R) Xeon(R) Gold 6330 CPUs.
We use GNU Parallel [52] to parallelize our tasks, and always
limit each task to 60 minutes of CPU time and 20GB of RAM.

Dataset. We consider all Ethereum blocks (and contracts)
from its genesis block (July 2015) up to and including block
16976770 (April 2023). Since there are almost 2 billion
external transactions in the Ethereum network at the time of
writing, inspecting and indexing them requires a substantial
amount of time – approximately 60 days. We consider this
as a necessary one-off preparation step for any work that
aims to study the Ethereum blockchain. We rely on a local
deployment of the go-Ethereum client [32] to access and
inspect transactions in an efficient way.

A. Component Discovery

We run our on-chain Proxy Detection 1 on top of go-
Ethereum. This step takes approximately one hour. Similarly,
we run the Lifespan Analysis 2 on the discovered proxy
contracts and observe a median execution time of 2.7 seconds
per proxy. We observe a memory usage below 500MB.

1 Proxy Detection. In the studied time window, we observe
53,580,899 deployed smart contracts. Out of those, we extract
all the contracts that ever participate either as the source
(proxy) or as the target (logic) of a DELEGATECALL instruc-
tion, 14,237,696 in total. In the following sections, we will
always refer to this subset of contracts. As per our definition
of proxy contract, we label 14,134,133 proxy contracts that are
the source of a delegation. Similarly, we label 103,833 logic
contracts that are the target of a delegation.

In Figure 8, we present the cumulative number of proxy
contracts deployed over time, highlighting the number of
associated logic contracts. The majority of proxy contracts
interact with 3 or less logic contracts, while only very few
contracts interact with more than 3 different logic contracts.

A careful reader will notice how the number of proxy
and logic contracts does not sum up to exactly the number
of relevant contracts. In fact, we observe that some of the
contracts are used both as a proxy and as a logic contract.
Although counter-intuitive, we believe it demonstrates that
blockchain developers leverage composability, re-using the
existing on-chain contracts as much as possible.

Results Discussion. Out of the 14,237,696 proxy and logic
contracts identified by our analysis, 7,744,861 (54%) have
source code available on Etherscan [23]. Interestingly, among
the proxy contracts with available source, more than 90% call
at least one logic contract without available source. This leaves
us with only 84,283 (0.6%) of the interacting components that
are fully open-sourced, justifying our choice of developing a
bytecode-based analysis.

We further observe that only 93,879 proxy contracts and
51,667 logic contracts have distinct bytecode. This result
suggests that many of these contracts are aggressively re-
deployed. However, while many contracts might not have
distinct bytecode, it is important to note that each separate
deployment has a completely independent storage. Since the
storage contents are critical for our analysis, we always con-
sider the total number of identified proxy and logic contracts,
including the ones with identical bytecode.

Finally, we measure the size of the proxy and logic con-
tracts. As a fair unit of measure, we choose to use the number
of basic blocks in the contract (as reported by Gigahorse).
We present the contracts’ sizes at the 25th, 50th, and 75th
percentile in Table I. The low median size of proxy contracts
(3 basic blocks) and the larger median size of logic contracts
(147 basic blocks) confirm the basic assumption about proxy
design pattern: proxy contracts are small because they only
hold the storage, and the functionality is implemented in the
logic contracts.

Contract Type Size (25th) Size (Median) Size (75th)
Proxy 3 3 8
Logic 45 147 440

TABLE I: Contract size in number of basic blocks.

2 Lifespan Analysis. As shown if Figure 9, we find that a
majority of the deployed proxy contracts (12.5M, or 88%) use
at least one constant target logic – which cannot change over
time. Furthermore, 5.6M (39%) of the proxy contracts use a
target logic address that comes from an external source – for

9

8M
0.4M

1K

1.1M

2.9M
18K

1.6M

Constant

Storage

External

Fig. 9: Usage of target logic types among the proxy contracts.

Contract Type Lifespan (25th) Lifespan (Median) Lifespan (75th)
Proxy 3 5 10
Proxy (upgraded) 10 21 28
Logic 2 4 9
Logic (upgraded) 0 1 7

TABLE II: Lifespan in months of all proxy and logic contracts.

example, the transaction’s calldata, or an external contract –
and 2M (14%) of the proxy contracts use a target logic that
is read from a storage slot. Notably, a large number of proxy
contracts employs two or more different types of target logics.
Our analysis is robust against the type of target logics used
by the proxy contract, and CRUSH can identify and exploit
vulnerabilities across different target logic types.

We measure the lifespan of all proxy and logic contracts,
and present our measurements in Table II. While the median
lifespan of the proxy contracts is approximately 5 months, we
find that the median lifespan of the associated target logics is
slightly shorter – approximately 4 months. We also measure
the lifespan of proxy and logic contracts that are involved in
at least one upgrade. In this case, we find that the median
lifespan of proxy and logic contracts is significantly different
– 21 months and 1 month, respectively.

B. Collision Discovery

We run our Type Inference 3 analysis on all the discovered
proxy and logic contracts. We observe a median execution time
of 1.8 seconds per contract. We measure the analysis time
spent in the Collision Detection 4 stage to be in the order
of a fraction of a second per contract – or a few hours of
cumulative execution time to analyze all the COMPONENTS.
In fact, in this stage we leverage the results from 3 , and
compare the inferred types to detect inconsistencies, with very
little computational overhead.

3 Type Inference. Although the aim of this work is not to
provide a precise type analysis, we provide a comparison of
our type inference with the state-of-the-art analysis from the
Gigahorse framework [33]. To the best of our knowledge, the
latest version of Gigahorse that is at our disposal (commit
59599ec) does not explicitly show any type information.
Nonetheless, as our best attempt to provide a fair comparison,
we modify Gigahorse to expose additional internal analyses,
including storage variable types.

As mentioned above, only a subset of the discovered
proxy and logic contracts are open-source. As our source of

Tool Correct Types
Gigahorse 425,740 (76.9%)
CRUSH 484,465 (87.3%)

TABLE III: Number (and percentage) of correct types reported
by Gigahorse and CRUSH.

ground truth, we attempt to reproduce the compilation of all
source-available contracts, and rely on the compiler’s output to
understand their storage layouts. In this way, we build a ground
truth of more than 50 thousand contracts and more than 500
thousand storage slot types. We then analyze all such contracts
both with Gigahorse and with our analysis, and compare their
results in Table III. Gigahorse recognizes 425,740 (76.9%)
of the types correctly. Notably, CRUSH shows a significant
improvement and correctly identifies 484,465 (87.3%) types.

Results Discussion. We find that the key reason for the
difference in the performance of CRUSH and Gigahorse is that
Gigahorse’s type analysis is rule-based and only recognizes
access patterns that the developers explicitly encode. For
example, incomplete rules cause Gigahorse to mistype packed
variables that are updated simultaneously. Instead, CRUSH uses
symbolic execution to track the casting operations and does not
need to introduce ad-hoc rules.

4 Collision Detection. After inferring the types of all the
proxy and logic contracts, we run our collision detection analy-
sis. CRUSH uncovers 15,092 different contracts with a potential
storage collision. We refer to such collisions as “candidates”
since they do not yet account for either the security impact
of the vulnerability (5) or the blockchain state (6). More
specifically, CRUSH uncovers 46,403 collisions candidates over
a total of 15,092 contracts. We further (automatically) dissect
these results, and find that 4,877 (11%) of the detected collision
candidates arise from a cascading collision.

To investigate false positives among the collision candi-
dates detected by CRUSH, we perform the following manual
analysis. We randomly sample 50 proxy addresses with at least
one storage collision and arbitrarily select one such storage
collision per proxy for manual inspection. We observe that
in 30 cases, the inferred types were correct and the storage
collision was a true positive. In the remaining 20, we observe
an incorrect type inference that caused a false positive in our
collision detection. We elaborate on the causes – and impact
– of these type inference imprecisions in Section VI.

Results Discussion. As discussed in Section IV, a collision
between a fixed-sized type and the slot BASE of a mapping
type does not have any security impact – since any value
written in the slot BASE does not fundamentally change the
behavior of the mapping. As a result, we ignored 79,748 simple
collisions on mapping types. On the other hand, the security
impact of a displacement of the BASE slot – e.g., resulting
from a cascading collision – is more subtle and dependent
on the contract’s logic. We observe 428 such collisions on
mapping types. We elaborate on these scenarios in Section VI.

C. Vulnerability Discovery

We run our Impact Analysis 5 and Exploit Generation
6 on all the discovered collisions candidates. We observe

a median execution time of 25 seconds per collision, and

10

Code Hash (Anonymized) Financial Impact (USD) Previously Reported Currently Exploitable
b29f † 6M Yes No
cfa7 4.6M No No
295b 1.1M No No
Others 242k No Yes

TABLE IV: Overview of several attacks automatically generated by CRUSH, highlighting those previously unreported. † is the
attack against the AUDIUS protocol [3].

memory use below 1GB. Out of the 15,092 contracts with
collision candidates, we could not analyze 660. In particular,
588 of them timed out (60 minutes), and 72 exceeded our
memory limit (20GB of RAM).

5 Impact Analysis. Among the 46,403 collisions discovered
in 4 , CRUSH discards 6,508 (14%) because either the analysis
fails or the collision does not impact any sensitive slot.
Out of the remaining ones, we observe that 39,042 (98%)
affect a sensitive slot, while 853 (2%) affect a guarding slot.
This leaves us with a total of 39,895 collisions over 14,891
contracts.

6 Exploit Generation. CRUSH analyzes the exploitability of
all collisions that are possibly security relevant and attempts
to automatically synthesize an attack. We present the results
of our automatic exploit generation in Table V.

Impact Exploitable Collisions Exploitable Contracts
Sensitive USE 7,759 878
Guarding USE 424 143

TABLE V: Number of exploitable collisions and contracts. We
separately report the exploits based on their impact.

In total, CRUSH successfully generates an end-to-end ex-
ploit for 956 contracts. More specifically, CRUSH successfully
exploits 7,759 sensitive collisions (WRITE → Sensitive USE)
in 878 contracts, and 424 guarding collisions (WRITE →
Guarding USE) in 143 contracts. Note that the same contract
may be exploited both by affecting a sensitive slot and a
guarding slot.

We show a few examples of such automatically synthesized
attacks in Appendix A and Appendix B. These examples are
anonymized to prevent precise contract identification since the
contracts are still vulnerable at the time of writing.

Results Discussion. In Table IV, we show a breakdown of
the most impactful, manually-verified 4, exploits generated
by CRUSH, sorted by financial impact. Most of these attacks
are new and previously unreported, others (i.e., the AUDIUS
attack [3]) were instead previously reported. To calculate the
financial damage of an exploit, we determine all assets that
can be stolen or lost – i.e., Ether and (non)-fungible tokens –
at the latest exploitable block, and then convert their value to
USD, considering the historical conversion rates.

CRUSH uncovers at least $6 million of novel, previously
unreported financial damage that results from the exploitation
of a storage collision vulnerability. We present the distribution
of exploitable contracts over time in Figure 10. Since 2018, we
observe a linear growth in the number of vulnerable contracts.

4We estimate the manual effort involved in the verification of the exploits
to be in the order of a few minutes per exploit. Since the exploit generation
is fully automated, the human analyst must verify that the exploit is security
relevant.

Coincidentally, OpenZeppelin’s proxy pattern [45] was indeed
introduced in 2018, prompting a growth in the adoption of
such a design pattern. We report that at least 132 out of the
956 contracts with a working exploit are still exploitable at the
time of writing, while the remaining 768 have been exploitable
in the past. 5

To investigate false positives among the exploits generated
by CRUSH, we study a sample of 165 of the exploits that have
been automatically generated. From this analysis, we were able
to confirm at least 60 exploits with a clear security impact
– e.g., denial of service or theft of funds – and at least 70
exploits with a possible security impact – i.e., that allow the
modification of a sensitive storage slot. Finally, we identified
35 false positives – of which 20 due to imprecisions in our
Type Inference 3 (we expand on this in Section VI) and 15
due to imprecisions in our Impact Detection 5 .

D. Comparison with Existing Systems

We compare CRUSH’s collision detection module (4) with
the state-of-the-art tool for collision detection, USCHUNT [7],
and report the results in Table VI.

Tool TP FP FN
USCHUNT 21 22 81
CRUSH 98 40 4

TABLE VI: True Positives (TP), False Positives (FP), and False
Negatives (FN) resulting from the comparison of CRUSH with
USCHUNT.

USCHUNT does not support an end-to-end detection and
validation of storage collision vulnerabilities, and instead lever-
ages a source-code-only analysis implemented in Slither [24]
that checks if storage variables 1) appear in the same order
and 2) have the same names. For a fair comparison, we run
our analysis on USCHUNT’s dataset – comprising 5,335 proxy
contracts with source code available – and show that CRUSH
implements a more precise analysis that detects more storage
collisions.

On this dataset, CRUSH identifies 138 collisions and
USCHUNT detects 43 collisions. We manually investigate these
collisions to establish the ground truth, and find that 102 of
them are true collisions, out of which CRUSH identified 98
and USCHUNT identified 21.

Thus, we report 40 false positives and 4 false negatives for
CRUSH. All the false positives observed are the result of an
incorrect type inference – in the majority of the cases caused by

5Our exploit generation establishes whether a contract is currently ex-
ploitable (at the reference block) or has been exploitable before (but not any
longer). A contract is no longer exploitable when the logic has been upgraded,
the contract is corrupted and inoperable, or the new logic has overwritten the
corrupted slot with the correct value.

11

non-standard access patterns such as inline assembly. One of
the false negatives is a semantic-type collision easily detectable
only in the contracts’ source code via a corresponding variable
name’s change. Each of the remaining false negatives is a
consequence of our online proxy detection strategy, which does
not consider proxy contracts without any interaction.

Among the collisions detected by USCHUNT, we report
22 false positives and 81 false negatives. We identify four
core reasons for the false positives in USCHUNT. First, 5
of the false positives result from its wrong understanding of
variable packing and storage layout – USCHUNT detects any
change in variables’ alignment in the source code as a storage
collision, ignoring the fact that the new variable could be
safely packed into an existing slot, or never even allocated
if left unused. Second, 7 of the false positives result from
the variable names being intentionally different (e.g., logic
versus _logic) but preserving type and semantics. Third,
6 of the false positives result from an intentionally inserted
storage gap (e.g., 50 unused storage slots). Finally, in 4 cases,
the contract is incorrectly identified as a proxy and does not
implement any delegation functionality.

Finally, the three core reasons for the higher number of
false negatives in USCHUNT are:

● To identify proxy and logic contracts, USCHUNT relies
on Etherscan labels [22]. However, Etherscan labels are
not always reliable, and we find that 40 of the 81
false negatives in USCHUNT are caused by a failure in
identifying one or more of the logic contracts.
● While CRUSH detects collisions based on type infer-

ence and variable layout reconstruction (Section IV-B),
USCHUNT approximates the storage layout based on
variable names and leverages an existing solution,
Slither [24], to perform static analysis on the contracts’
source code. This design choice creates many false neg-
atives. In fact, we find that 41 of the 81 false negatives
in USCHUNT are caused by a failure in Slither’s static
analysis.
● Since USCHUNT relies on the availability of source code,

it cannot detect a storage collision when one or more
of the contracts involved are closed-source. While this
is not the direct cause of any of the 81 observed false
negatives, we find that in many cases even fixing the
original problem would not help, since one or more of
the logic contracts are closed-source.

E. Ethical Concerns

To prevent any damage to the contracts identified as vulner-
able, we anonymize the reported results, and we do not disclose
any identifying information in this submission. Furthermore,
all the discovered exploits have been verified exclusively on
our private blockchain fork, and never on the public Ethereum
mainnet. We strongly believe that the role of responsible
disclosure is key to fostering a safer blockchain ecosystem.
Therefore, we made an effort to report our findings to the
developers of all the affected smart contracts, and are currently
awaiting acknowledgment. However, since this was not always
possible, we also reported the confirmed vulnerabilities to the
Cybersecurity and Infrastructure Security Agency [12].

2016 2017 2018 2019 2020 2021 2022 2023

Time (Year)

0

10

20

30

40

50

60

70

N
u

m
b

er
of

ex
p

lo
it

ab
le

co
n
tr

ac
ts

Sensitive use Exploits

Guarding use Exploits

Total

Fig. 10: Number of reported exploitable contracts over time.

VI. DISCUSSION

External Target. For our Component Discovery Analysis
(1 / 2) presented in Section IV-A, we need to understand the
target of each DELEGATECALL. Currently, when the target
address is not defined in the code of the contract, or saved in
one of its storage slots, we process it as an external target.
An external target means that the address is provided for
example within the calldata of a user’s transaction or within
the return value of a call to another contract (i.e., an oracle
contract). For simplicity, in this work, we fully model only
the former case. While this means that we could potentially
miss further elements in a group of interacting contracts
(i.e., COMPONENT), and thus, potential attacks, our results
(Section V) shows how our approach is already effective in
finding hundreds of attacks.

Type Inference Imprecision. Our Type Inference Analysis 3
compares favourably to the state-of-the-art in our evaluation
(Figure III), but is not always precise. This imprecision in
understanding the high-level types from their low-level rep-
resentation can produce both false positives and false nega-
tives for the following analyses, e.g., the Collision Detection
Analysis 4 discussed in Section IV-B. We investigate these
imprecisions and observe that they are caused by either hand-
written low-level assembly code, compiler optimizations, or
the use of non-standard access patterns. In all such cases, it is
possible to design ad-hoc heuristics to improve the precision
of our type inference.

Cascading Collisions & Mappings. As explained in Sec-
tion II-C, the content of the BASE slot of a mapping variable
is left uninitialized (i.e., STORAGE[BASE]=0x0) and the value
BASE is used only to calculate the storage offset of the
elements in the mapping (i.e., an element with key: KEY is
stored at the offset keccak256(KEY.BASE)). Any value
written in the slot BASE does not fundamentally change the
behavior of the mapping. Thus, any collision that involves
the BASE slot of a mapping does not usually have security
implications. That being said, a separate case should be made
when a mapping variable’s BASE slot is displaced in a cascad-
ing collision (Figure 7). In this case, the BASE slot changes
its value, afflicting the computation of the storage offset for

12

every mapping element. In most cases, all the elements in the
map would be now pointing to uninitialized values (i.e., 0x0),
however, it is theoretically possible to instead achieve arbitrary
memory write/read over other critical variables in the storage.
Triaging this logical vulnerability requires a significant manual
effort, therefore, we left it out of scope in our Vulnerability
Discovery (5 / 6) and consider it as a future work.

VII. RELATED WORK

Proxy Discovery and Storage Collision. A work by Bodell et
al. [7] identifies smart contract proxies leveraging the source
code uploaded on platforms like Etherscan [23]. In particular,
a contract is identified as a proxy if it has a fallback function in
its source containing a DELEGATECALL. Our Logic Discovery
analysis (1 / 2) is also able to recognize proxies on-chain, but,
rather than leveraging insights from the contracts’ code, we
can identify a proxy-like behavior by observing the type of
contracts’ interactions. As our definition is by design more
generic, our system is able to identify a larger number of
proxies than [7]. We also observe that only half of the proxies
that we identify are open-source. Moreover, as opposed to
[7], we do not only detect proxy contracts but also uncover
their corresponding logic contracts. Surprisingly, the afore-
mentioned work estimates the impact of storage collision as
negligible for real on-chain contracts, which does not seem to
be the case according to our evaluation.

Another work [31], mainly focused on studying the impact
of the CREATE2 [59] instruction on the Ethereum smart
contracts ecosystem, includes a discussion about proxies and
smart contracts upgradability issues. Finally, Salehi et al. [49]
investigated the upgradability patterns used on-chain and per-
formed a large-scale analysis of the access-control mechanisms
used to manage the upgrade of smart contracts. We consider
the two latter works as orthogonal to ours as we are instead
investigating storage collision vulnerabilities, which are not
covered by any of the aforementioned studies.

Type Inference. SIGREC [11] presents an automatic method
for function signature recovery, which includes the identifi-
cation of the function arguments’ types via analyzing how
the CALLDATA is processed by the contract’s code. However,
as the primary scope of SIGREC is to extract the function
signatures of smart contracts with unknown ABIs, we consider
it orthogonal to the work presented in this paper.

Our Type Inference analysis (3) operates on the register-
based intermediate representation of the originally stack-
based bytecode provided by the Gigahorse framework [33],
[35], which drives several efficient vulnerability discovery
efforts [9], [34], [41], [51]. While Gigahorse can be employed
out-of-the-box to recover variables’ types in a contract binary,
we demonstrated in Section V (Table III) how our symbolic
analysis is able to provide more precise results.

Storage Layout. The work by Ayub et al. [4] leverages a
source code analysis to automatically recover a smart contract’s
storage layout. That is, given a high-level type, its low-level
layout is identified with the help of the Solidity compiler’s
rules. Our approach also encompasses an understanding of
storage layout, however, the layout is recovered from the smart
contract’s bytecode rather than its source. Rodler et al. [48]
also discusses the criticality of compatible storage layouts

when performing code upgrades. However, their work is fo-
cused on automatically hardening smart contract functionality
against common errors such as integer overflows and access
control bugs, which is different from the goal of CRUSH.

“Classic” Smart Contract Attacks. In the realm of analyzing
smart contracts, several approaches have been proposed by
researchers for “classic” smart contract attacks. For example,
Tsankov et al. developed Securify [56], which utilizes a smart
contract’s dependency graph to identify vulnerability patterns.
Another approach, proposed by Ma et al. [43], performs
symbolic analysis to explore inter-contract control-flow graphs
and detect classic bugs like re-entrancy and arithmetic issues.
Similarly, Liao et al. presented SmartDagger [42], a static
analysis framework that combines data-flow analyses and op-
timization techniques to uncover inter-contract vulnerabilities.
Ye et al. introduced Clairvoyance [60], a static analysis tool
that constructs a cross-contract control-flow graph based on the
contracts’ source code to identify candidate critical paths for
re-entrancy bug exploitation. Xue et al. proposed xFuzz [61],
employing machine learning to filter benign cross-contract
execution paths and enhance fuzzing efficiency. Unlike these
works, our approach, CRUSH, is not centered on the analysis
of classic vulnerabilities, like re-entrancy. Instead, our system
targets storage collisions: a cross-contract vulnerability that
arises when specific circumstances are met. To the best of our
knowledge, storage collision vulnerabilities are not detected by
any of these state-of-the-art systems.

Exploit Generation. Other works [25], [30], [38]–[40], [62]
focus on automatic exploit generation, i.e., synthesizing the
input (transactions) needed to exploit a vulnerable smart
contract’s code. However, differently from our work, all
the aforementioned papers focus on generating attacks for
“classic” vulnerabilities such as integer overflow, re-entrancy,
controllable calls, and batch-overflow [46].

VIII. CONCLUSIONS

In this paper, we study a widely under-investigated cross-
contract vulnerability known as a storage collision, which
occurs when a group of smart contracts operates over the
same underlying storage data with a different interpretation
of its types and/or semantics. When successfully exploited,
this vulnerability can result in unexpected behaviors such
as denial of service, privilege escalation, and direct theft of
financial assets in a smart contract. To identify storage collision
vulnerabilities at scale, we proposed CRUSH, a novel system
that we use to analyze 14,237,696 contracts deployed since
the beginning of the Ethereum network operations. CRUSH
identified a total of 14,891 potentially vulnerable contracts and
automatically synthesized 956 exploits. We estimated at least
$6 million of novel, previously unreported potential financial
damage uncovered by our system. Our work highlights the
importance of thorough security analysis of smart contract
interactions to improve the resilience of the DeFi ecosystem.

ACKNOWLEDGMENTS

We want to thank the anonymous reviewers for their
valuable feedback. This material is based upon work supported
by the Google Security, Privacy, and Anti-Abuse Award. Any
opinions, findings, conclusions, or recommendations expressed
in this publication are those of the author(s) and do not
necessarily reflect the views of Google.

13

REFERENCES

[1] 1inch. 1inch. https://1inch.io, 2023.

[2] 1inch. 1inch introduces Chi Gastoken. https://blog.1inch.io/1inch-
introduces-chi-gastoken, 2023.

[3] Inc. Audius. Audius. https://audius.co, 2023.

[4] Maha Ayub, Tania Saleem, Muhammad Umar Janjua, and Talha Ahmad.
Storage state analysis and extraction of ethereum blockchain smart con-
tracts. ACM Transactions on Software Engineering and Methodology,
2022.

[5] Kim Barrett, Bob Cassels, Paul Haahr, David A Moon, Keith Playford,
and P Tucker Withington. A monotonic superclass linearization for
dylan. In Proceedings of the 11th ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications, pages 69–
82, 1996.

[6] blockworks. Ethereum market cap. https://blockworks.co/price/eth,
2023.

[7] William E Bodell III, Sajad Meisami, and Yue Duan. Proxy hunting:
understanding and characterizing proxy-based upgradeable smart con-
tracts in blockchains. In 32nd USENIX Security Symposium (USENIX
Security 23), pages 1829–1846, 2023.

[8] Priyanka Bose, Dipanjan Das, Yanju Chen, Yu Feng, Christopher
Kruegel, and Giovanni Vigna. Sailfish: Vetting smart contract state-
inconsistency bugs in seconds. In 2022 IEEE Symposium on Security
and Privacy (SP), pages 161–178. IEEE, 2022.

[9] Lexi Brent, Neville Grech, Sifis Lagouvardos, Bernhard Scholz, and
Yannis Smaragdakis. Ethainter: a smart contract security analyzer for
composite vulnerabilities. In Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and Implementation,
pages 454–469, 2020.

[10] Chainlink. Chain oracle. https://chain.link/education/blockchain-
oracles, 2023.

[11] Ting Chen, Zihao Li, Xiapu Luo, Xiaofeng Wang, Ting Wang, Zheyuan
He, Kezhao Fang, Yufei Zhang, Hang Zhu, Hongwei Li, et al. Sigrec:
Automatic recovery of function signatures in smart contracts. IEEE
Transactions on Software Engineering, 48(8):3066–3086, 2021.

[12] CISA. Cybersecurity and infrastructure security agency. https://
www.cisa.gov, 2023.

[13] Coinmarketcap. Btc. https://coinmarketcap.com/currencies/bitcoin/,
2023.

[14] Cointelegraph. Decentralized exchange. https://cointelegraph.com/
learn/what-are-decentralized-exchanges-and-how-do-dexs-work, 2023.

[15] Consensys. Consensys mythx. https://mythx.io, 2023.

[16] Consensys. Fallback functions. https://consensys.github.io/smart-
contract-best-practices/development-recommendations/solidity-
specific/fallback-functions/, 2023.

[17] Decrypt.com. ’audits are not bulletproof’: How audius was hacked for
6m usd in ethereum tokens. https://decrypt.co/105913/how-audius-was-
hacked-6m-ethereum-tokens, 2022.

[18] Ethereum. Eip-7: Delegatecall. https://eips.ethereum.org/EIPS/eip-7,
2015.

[19] Ethereum. Decentralized finance (defi). https://ethereum.org/en/defi/,
2022.

[20] Ethereum. Ethereum. https://ethereum.org/en/, 2022.

[21] Ethereum. What is eth? https://ethereum.org/en/eth/, 2022.

[22] Etherscan. ContractChecker. https://etherscan.io/proxyContractChecker,
2023.

[23] Etherscan. The ethereum blockchain explorer. https://etherscan.io/,
2023.

[24] Josselin Feist, Gustavo Grieco, and Alex Groce. Slither: a static analysis
framework for smart contracts. In 2019 IEEE/ACM 2nd International
Workshop on Emerging Trends in Software Engineering for Blockchain
(WETSEB), pages 8–15. IEEE, 2019.

[25] Yu Feng, Emina Torlak, and Rastislav Bodik. Precise attack synthesis
for smart contracts. arXiv preprint arXiv:1902.06067, 2019.

[26] Ethereum Foundation. Erc-1967: Proxy storage slots. https://
eips.ethereum.org/EIPS/eip-1967, 2019.

[27] Ethereum Foundation. Erc-3156: Flash loans. https://eips.ethereum.org/
EIPS/eip-3156, 2020.

[28] Ethereum Foundation. Py-evm. https://github.com/ethereum/py-evm,
2023.

[29] Python Software Foundation. Python language reference. https:
//python.org, 2023.

[30] Joel Frank, Cornelius Aschermann, and Thorsten Holz. Ethbmc: A
bounded model checker for smart contracts. In Proceedings of the 29th
USENIX Conference on Security Symposium, pages 2757–2774, 2020.

[31] Michael Fröwis and Rainer Böhme. Not all code are create2 equal. In
6th Workshop on Trusted Smart Contracts (WTSC’22), 2022.

[32] geth.ethereum. go-ethereum. https://geth.ethereum.org/, 2023.

[33] Neville Grech, Lexi Brent, Bernhard Scholz, and Yannis Smaragdakis.
Gigahorse: thorough, declarative decompilation of smart contracts. In
2019 IEEE/ACM 41st International Conference on Software Engineer-
ing (ICSE), pages 1176–1186. IEEE, 2019.

[34] Neville Grech, Michael Kong, Anton Jurisevic, Lexi Brent, Bernhard
Scholz, and Yannis Smaragdakis. Madmax: Analyzing the out-of-gas
world of smart contracts. Communications of the ACM, 63(10):87–95,
2020.

[35] Neville Grech, Sifis Lagouvardos, Ilias Tsatiris, and Yannis Smarag-
dakis. Elipmoc: advanced decompilation of ethereum smart contracts.
Proceedings of the ACM on Programming Languages, 6(OOPSLA1):1–
27, 2022.

[36] Fabio Gritti, Nicola Ruaro, Robert McLaughlin, Priyanka Bose, Dipan-
jan Das, Ilya Grishchenko, Christopher Kruegel, and Giovanni Vigna.
Confusum contractum: confused deputy vulnerabilities in ethereum
smart contracts. In 32nd USENIX Security Symposium (USENIX
Security 23), pages 1793–1810, 2023.

[37] Everett Hildenbrandt, Manasvi Saxena, Nishant Rodrigues, Xiaoran
Zhu, Philip Daian, Dwight Guth, Brandon Moore, Daejun Park,
Yi Zhang, Andrei Stefanescu, et al. Kevm: A complete formal semantics
of the ethereum virtual machine. In 2018 IEEE 31st Computer Security
Foundations Symposium (CSF), pages 204–217. IEEE, 2018.

[38] Bo Jiang, Ye Liu, and Wing Kwong Chan. Contractfuzzer: Fuzzing
smart contracts for vulnerability detection. In Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineer-
ing, pages 259–269, 2018.

[39] Ling Jin, Yinzhi Cao, Yan Chen, Di Zhang, and Simone Campanoni.
Exgen: Cross-platform, automated exploit generation for smart contract
vulnerabilities. IEEE Transactions on Dependable and Secure Comput-
ing, 2022.

[40] Johannes Krupp and Christian Rossow. teether: Gnawing at ethereum
to automatically exploit smart contracts. In 27th USENIX Security
Symposium (USENIX Security 18), pages 1317–1333, 2018.

[41] Sifis Lagouvardos, Neville Grech, Ilias Tsatiris, and Yannis Smarag-
dakis. Precise static modeling of ethereum “memory”. Proceedings of
the ACM on Programming Languages, 4(OOPSLA):1–26, 2020.

[42] Zeqin Liao, Zibin Zheng, Xiao Chen, and Yuhong Nan. Smartdagger:
a bytecode-based static analysis approach for detecting cross-contract
vulnerability. In Proceedings of the 31st ACM SIGSOFT International
Symposium on Software Testing and Analysis, pages 752–764, 2022.

[43] Fuchen Ma, Zhenyang Xu, Meng Ren, Zijing Yin, Yuanliang Chen,
Lei Qiao, Bin Gu, Huizhong Li, Yu Jiang, and Jiaguang Sun. Pluto:
Exposing vulnerabilities in inter-contract scenarios. IEEE Transactions
on Software Engineering, 2021.

[44] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system.
Decentralized business review, page 21260, 2008.

[45] OpenZeppelin. Proxy pattern. https://docs.openzeppelin.com/upgrades-
plugins/1.x/proxies, 2023.

[46] Peckshield. New batchoverflow bug in multiple erc20 smart
contracts (cve-2018–10299). https://peckshield.medium.com/alert-
new-batchoverflow-bug-in-multiple-erc20-smart-contracts-cve-2018-
10299-511067db6536, 2018.

[47] Anton Permenev, Dimitar Dimitrov, Petar Tsankov, Dana Drachsler-
Cohen, and Martin Vechev. Verx: Safety verification of smart contracts.
In 2020 IEEE symposium on security and privacy (SP), pages 1661–
1677. IEEE, 2020.

14

[48] Michael Rodler, Wenting Li, Ghassan O Karame, and Lucas Davi.
Evmpatch: Timely and automated patching of ethereum smart contracts.
In USENIX Security Symposium, pages 1289–1306, 2021.

[49] Mehdi Salehi, Jeremy Clark, and Mohammad Mannan. Not so im-
mutable: Upgradeability of smart contracts on ethereum. arXiv preprint
arXiv:2206.00716, 2022.

[50] Clara Schneidewind, Ilya Grishchenko, Markus Scherer, and Matteo
Maffei. ethor: Practical and provably sound static analysis of ethereum
smart contracts. In Proceedings of the 2020 ACM SIGSAC Conference
on Computer and Communications Security, pages 621–640, 2020.

[51] Yannis Smaragdakis, Neville Grech, Sifis Lagouvardos, Konstantinos
Triantafyllou, and Ilias Tsatiris. Symbolic value-flow static analysis:
deep, precise, complete modeling of ethereum smart contracts. Pro-
ceedings of the ACM on Programming Languages, 5(OOPSLA):1–30,
2021.

[52] O. Tange. Gnu parallel - the command-line power tool. ;login: The
USENIX Magazine, 36(1):42–47, Feb 2011.

[53] Solidity Team. Solidity. https://soliditylang.org, 2022.
[54] Vyper Team. Vyper. https://vyperlang.org, 2022.
[55] Truffle. Truffle suite. https://trufflesuite.com, 2023.
[56] Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen, Arthur Gervais,

Florian Buenzli, and Martin Vechev. Securify: Practical security
analysis of smart contracts. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, pages 67–82,
2018.

[57] Wikipedia. Program slicing. https://en.wikipedia.org/wiki/Program
slicing, 2023.

[58] Wikipedia. Sha-3. https://en.wikipedia.org/wiki/SHA-3, 2023.
[59] Gavin Wood et al. Ethereum: A secure decentralised generalised

transaction ledger. Ethereum project yellow paper, 151(2014):1–32,
2014.

[60] Yinxing Xue, Mingliang Ma, Yun Lin, Yulei Sui, Jiaming Ye, and
Tianyong Peng. Cross-contract static analysis for detecting practical
reentrancy vulnerabilities in smart contracts. In Proceedings of the
35th IEEE/ACM International Conference on Automated Software En-
gineering, pages 1029–1040, 2020.

[61] Yinxing Xue, Jiaming Ye, Wei Zhang, Jun Sun, Lei Ma, Haijun Wang,
and Jianjun Zhao. xfuzz: Machine learning guided cross-contract
fuzzing. IEEE Transactions on Dependable and Secure Computing,
2022.

[62] Qingzhao Zhang, Yizhuo Wang, Juanru Li, and Siqi Ma. Ethploit: From
fuzzing to efficient exploit generation against smart contracts. In 2020
IEEE 27th International Conference on Software Analysis, Evolution
and Reengineering (SANER), pages 116–126. IEEE, 2020.

[63] Liyi Zhou, Xihan Xiong, Jens Ernstberger, Stefanos Chaliasos, Zhipeng
Wang, Ye Wang, Kaihua Qin, Roger Wattenhofer, Dawn Song, and
Arthur Gervais. Sok: Decentralized finance (defi) attacks. Cryptology
ePrint Archive, 2022.

APPENDIX A
DENIAL OF SERVICE

In the following section, we describe one of the attacks
automatically synthesized by CRUSH. The attack involves two
smart contracts and leads to the critical compromise – and
potential denial of service – of such contracts.

The ChiProxy contract (anonymized code hash: e961),
presented in Figure 11, allows one to forward user interactions
to the respective implementation (through the fallback
function at Line 22) and uses a wallet address to provide and
keep track of the consumed gas tokens. The proxy also allows
the owner to withdraw funds from the contract through the
functions withdrawETH (Line 12) and withdrawToken
(Line 15) – restricted to the owner with the onlyOwner
modifier.

The CHI gas token [2] contract (or ChiToken, with

1 import "StorageSlot.sol";
2

3 contract ChiProxy {
4 address logic;
5 address wallet;
6 address owner;
7 constructor(address _logic, address _wallet)

payable {
8 logic = _logic;
9 wallet = _wallet;

10 owner = msg.sender;
11 }
12 function withdrawETH() public onlyOwner {
13 msg.sender.call().value(this.balance);
14 }
15 function withdrawToken(address token_contract)

public onlyOwner {
16 uint256 balance_proxy =

token_contract.balanceOf(this);
17 address(token_contract).transfer(msg.sender,

balance_proxy);
18 }
19 function setLogicContract(address _logic) public

onlyOwner {
20 logic = _logic;
21 }
22 fallback() external payable virtual {
23 calldatacopy(0, 0, calldatasize());
24 delegatecall(gas(), logic, 0, calldatasize(),

0, 0);
25 balance_wallet = CHI_TOKEN.balanceOf(wallet);
26 if (balance_wallet > 0) {
27 CHI_TOKEN.freeFromUpTo(wallet, <CHI_GAS>);
28 }
29 }
30 }
31

32 contract ChiProxy2 {
33 address owner;
34 address logic;
35 address wallet;
36 [..]
37 }
38

39 contract ChiToken {
40 mapping(address => uint256) private _balances;
41 mapping(address => mapping(address => uint256))

private _allowances;
42 uint256 public totalMinted;
43 uint256 public totalBurned;
44 [..]
45 function mint(uint256 value) public {
46 [..]
47 totalMinted = totalMinted + value;
48 }
49 }

Fig. 11: Simplified Solidity code for the ChiProxy,
ChiProxy2, and ChiToken contracts.

anonymized code hash: e9da) is a mechanism designed by
1inch [1] to save on gas costs. For the sake of this example,
it is not necessary to understand the functionality of the
gas token, thus, we refer the interested reader to the official
documentation [2] and only show the relevant part of its source
code in Figure 11. In particular, it is critical to note that
both ChiProxy and ChiToken contracts store some of their
variables sequentially starting from the storage slot zero (Lines
4-6 and Lines 33-35 respectively).

The developers deploy the proxy contract ChiProxy and
point its implementation logic to the ChiToken contract.
Similarly to the previous example discussed in Appendix B,
the implementation’s code (executed by the DELEGATECALL
on Line 24) operates on the same storage as the proxy, creating
a storage collision between the proxy variables (logic,
wallet, and owner) and the implementation variables (_-

15

balances, _allowances, and totalMinted). Since –
as discussed in Section VI – the BASE slot of a mapping
variable remains unused, the collisions with the variables

balances and allowances do not result in a vulnerability.
However, any statement in the implementation that updates
the totalMinted variable effectively overwrites the proxy’s
owner address.

In our – automatically discovered – attack scenario, an
attacker can then call the mint function (Line 45) in the
implementation to increment the value of totalMinted
by a specified amount – therefore incrementing the proxy’s
owner address by such a specified amount. In the general
case, this interaction will overwrite the proxy’s owner address
and brick the proxy contract, breaking any functionality that
is restricted by the onlyOwner modifier. However, it is
theoretically possible for a sufficiently motivated attacker to
manipulate such value and point the owner address to an
attacker-controlled address.

To fix this vulnerability, the developers must modify the im-
plementation contract to use a storage padding and prevent the
storage variables from overlapping, and then use the setLog-
icContract (Line 19) functionality in the proxy to upgrade
the implementation. Unfortunately, after the vulnerability is
exploited, there is no way to upgrade the implementation since
the attack corrupts the value of the proxy’s owner address,
therefore breaking any onlyOwner-restricted functionality.

We observe a variation of the ChiProxy contract –
ChiProxy2 (with anonymized code hash: ec3f) – also
presented in Figure 11 (Line 32). In this case, the variables of
the contract are reordered so that the storage collision happens
between the proxy’s wallet address and the implementa-
tion’s totalMinted variable. As a result, any statement in
the implementation that updates the totalMinted variable
effectively overwrites the proxy’s wallet address. As op-
posed to the previous example, in this case, an attacker can
manipulate (i.e., increment) the value of the wallet address
through the mint function in the implementation. However,
while manipulating the owner and logic variables has clear
security implications (i.e., loss of funds or denial of service),
the manipulation of the wallet address is not as critical
and might result in a temporary disruption of the contract
functionality.

APPENDIX B
THEFT OF FUNDS

The following section describes another attack automati-
cally synthesized by CRUSH. This attack involves two NFT-
related contracts and leads to the critical compromise – and
potential theft of funds – of such contracts. Figure 12 shows
the simplified Solidity code for the two contracts NFT-
ParentProxy (anonymized code hash: a2fc) and NFT-
ParentImpl (anonymized code hash: 6392). The former
contract implements a simple proxy to the latter.

The code of the proxy allows to forward any user inter-
action to the implementation (see the fallback function on
Line 22) and to upgrade such implementation if needed (see the
upgradeTo function on Line 42). The upgrade functionality
is restricted to the owner of the contract (via the onlyOwner
modifier). The implementation address is properly stored at

1 import "Address.sol";
2 import "StorageSlot.sol";
3

4 abstract contract Ownable {
5 address private _owner;
6 modifier onlyOwner() {
7 require(_owner == msg.sender, "Ownable: caller

is not the owner");
8 _;
9 } [..]

10 }
11

12 abstract contract Proxy {
13 constructor(address _logic) payable {
14 _upgradeTo(_logic);
15 }
16 function _upgradeTo(address _logic) internal {
17 uint256 SLOT = uint256(keccak256("eip1967[..]");
18 bytes _data =

abi.encodeWithSignature("initialize()")
19 StorageSlot.getAddressSlot(SLOT).value = _logic;
20 Address.functionDelegateCall(_logic, _data);
21 }
22 fallback() external payable virtual {
23 calldatacopy(0, 0, calldatasize());
24 uint256 SLOT = uint256(keccak256("eip1967[..]");
25 address impl =

StorageSlot.getAddressSlot(SLOT).value;
26 delegatecall(gas(), impl, 0, calldatasize(), 0,

0);
27 [..]
28 } [..]
29 }
30

31 abstract contract Initializable {
32 bool private _initialized;
33 bool private _initializing;
34 [..]
35 }
36

37 contract NFTParentProxy is Proxy, Ownable {
38 constructor(address _logic) payable {
39 Proxy(_logic);
40 owner = msg.sender;
41 }
42 function upgradeTo(address _logic) public onlyOwner

{
43 _upgradeTo(_logic);
44 }
45 }
46

47 contract NFTParentImpl is Initializable {
48 uint256[50] private __gap;
49 [..]
50 address private admin;
51 modifier onlyAdmin() {
52 require(admin == msg.sender, "Caller is not the

admin");
53 _;
54 }
55 function initialize() external {
56 [..]
57 admin = msg.sender;
58 }
59 function mintNFT([..]) public onlyAdmin {
60 [..]
61 }
62 }

Fig. 12: Simplified Solidity code for the NFTParentProxy
and NFTParentImpl contracts.

a high offset to avoid collisions. The proxy also stores the
variable owner at storage offset zero (Line 5 in the contract
Ownable, inherited by the proxy).

The code of the implementation allows minting a new
NFT, and provides some additional functionality (see the
initialize function on Line 55) to initialize the contract
and set the administrator address. The minting functionality

16

mintNFT (Line 59) is restricted to the administrator of the
contract (via the onlyAdmin modifier).

The developers were careful in designing the implemen-
tation storage and used a padding of 50 slots (Line 48) to
avoid collisions with the proxy contract. As a result, the
implementation stores the variable admin at storage offset 50
– which is not used in proxy, and thus, collision-free. However,
the developers did not consider that the contract Initializ-
able (Line 31) – inherited by the implementation – also has
two storage variables: initialized and initializing.
For the sake of this example, we will not explain how these
variables are used, but it is important to note that such variables
are stored at storage offset zero.

When the contracts are deployed, NFTParentProxy in
its constructor performs a DELEGATECALL to NFTPar-
entImpl.initialize() (the constructor call at Line 39
ultimately triggers the execution of the code at Line 20) and
then sets the proxy’s owner address at Line 40. Importantly,
the delegate call to NFTParentImpl.initialize() op-
erates on the same storage as the proxy, creating a storage
collision between the two boolean variables (initialized,
initializing) and the proxy’s owner address. This
causes the statement at Line 40 (which sets the proxy’s owner
address) to effectively overwrite the boolean values that were
previously set in NFTParentImpl.initialize(), caus-
ing the implementation to think that the contract was not yet
initialized.

An attacker can then freely call NFTPar-
entImpl.initialize() – through the proxy contract –
and become the administrator of the implementation contract.
This allows the attacker to access any restricted methods,
such as minting any arbitrary NFTs using the mint function
mintNFT (Line 59).

To fix this vulnerability, the developers must modify the
implementation contract to move the two boolean variables
after the storage padding and then use the upgrade functionality
in the proxy to upgrade the implementation. However, as in
the previous example, after the vulnerability is exploited, there
is no way to upgrade the implementation.

17

