Designing a Web of Highly-Configurable
Intrusion Detection Sensors

Giovanni Vigna, Richard A. Kemmerer, and Per Blix

Reliable Software Group
Department of Computer Science
University of California Santa Barbara
[vigna,kemm,perbli]@cs.ucsb.edu

Abstract. Intrusion detection relies on the information provided by
a number of sensors deployed throughout the monitored network in-
frastructure. Sensors provide information at different abstraction levels
and with different semantics. In addition, sensors range from lightweight
probes and simple log parsers to complex software artifacts that per-
form sophisticated analysis. Managing a configuration of heterogeneous
sensors can be a very time-consuming task. Management tasks include
planning, deployment, initial configuration, and run-time modifications.
This paper describes a new approach that leverages off the STAT model
to support a highly configurable sensing infrastructure. The approach
relies on a common sensor model, an explicit representation of sensor
component characteristics and dependencies, and a shared communica-
tion and control infrastructure. The model allows an Intrusion Detection
Administrator to express high-level configuration requirements that are
mapped automatically to a detailed deployment and/or reconfiguration
plan. This approach supports automation of the administrator tasks and
better assurance of the effectiveness and consistency of the deployed
sensing infrastructure.

Keywords: Security, Software Engineering, Intrusion Detection, STAT.

1 Introduction

Any monitoring and surveillance functionality builds on the analysis performed
by surveillance sensors. The intrusion detection community has developed a
number of different systems that perform intrusion detection in particular do-
mains (e.g., hosts or networks) and in specific environments (e.g., Windows NT
or Solaris).

These tools suffer from two main limitations: they are developed ad hoc for
certain types of domains and /or environments, and they are difficult to configure,
extend, and control remotely. In the specific case of signature-based intrusion
detection systems [1-4] the sensors are equipped with a number of signatures
that are matched against a stream of incoming events. Most systems (e.g., [1])
are initialized with a set of signatures at startup time. Updating the signature
set requires stopping the sensor, updating the signature set, and then restarting

execution. Some of these tools provide a way to enable/disable some of the
available signatures, but few systems allow for the dynamic inclusion of new
signatures at execution time. In addition, the ad hoc nature of existing tools
does not allow one to dynamically configure a running sensor so that a new
event stream can be used as input for the security analysis.

Another limit of existing tools is the relatively static configuration of re-
sponses. First of all, as for signatures, normally it is possible to choose only from
a specific subset of possible responses. In addition, to our knowledge, no system
allows for associating a response with intermediate steps of an attack. This is a
severe limitation, especially in the case of distributed attacks carried out over a
long time span.

Finally, the configuration of existing tools is mainly performed manually and
at a very low level. This task is particularly error-prone, especially if the intrusion
detection sensors are deployed across a very heterogeneous environment and
with very different configurations. The challenge is to determine if the current
configuration of one or more sensors is valid or if a reconfiguration is meaningful.

In this paper, we describe a novel approach to distributed intrusion detection.
The idea is that a protected network is instrumented with a “web of sensors”
composed of distributed components integrated by means of a local communi-
cation and control infrastructure. The task of the web of sensors is to provide
fine-grained surveillance inside the protected network. The web of sensors im-
plements local surveillance against both outside attacks and local misuse by
insiders in a way that is complementary to the mainstream approach where a
single point of access (e.g., a gateway) is monitored for possible malicious activ-
ity. The outputs of the sensors, in the form of alerts, are collected by a number of
“meta-sensor” components. Each meta-sensor is responsible for a subset of the
deployed sensors, and may coordinate its activities with other meta-sensors. The
meta-sensors are responsible for storing the alerts, for routing alerts to other sen-
sors and meta-sensors (e.g., to perform correlation to identify composite attack
scenarios), and for exerting control over the managed sensors.

Control is the most challenging (and most overlooked) functionality of dis-
tributed surveillance. Most existing approaches simply aggregate the outputs of
distributed sensors and focus mainly on the intuitive presentation of alerts to the
network security officer. This is just not enough. There is a need for fine-grained
control of the deployed sensors in terms of scenarios to be detected, tailoring
of the sensors with respect to the protected network, and dynamic control over
the types of response. These are requirements that can be satisfied only if the
surveillance sensors are highly configurable and configuration can be performed
dynamically, without stopping and restarting sensors when a reconfiguration is
needed.

We have designed a suite of highly configurable surveillance sensors and a
command and control meta-sensor that allows the network security officer to
exert a very fine-grained control over the deployed surveillance infrastructure.
Meta-sensors can be organized hierarchically to achieve scalability and can be
replicated to support fault-tolerance. This web of sensors is built around the

State Transition Analysis Technique (STAT) framework developed by the Re-
liable Software Group at UCSB. The STAT framework provides a platform for
the development of highly configurable probes in different domains and envi-
ronments. The STAT approach is centered around five key concepts: the STAT
technique, the STATL language, the STAT Core, the CommSTAT communica-
tion infrastructure, and the MetaSTAT control system.

The approach provides the basic mechanisms to reconfigure, at run-time,
which input event streams are analyzed by each sensor, which scenarios have
to be used for the analysis, and what types of responses must be carried out
for each stage of the detection process. In addition, the approach models ex-
plicitly the dependencies among the modules composing a sensor so that it is
possible to identify automatically the steps that are necessary to perform a re-
configuration of the deployed sensing infrastructure. In addition, the possibility
of retrieving current configurations from remote sensors allows one to determine
if a reconfiguration is valid or meaningful.

The remainder of the paper is structured as follows. Section 2 presents the
fundamental elements of the STAT approach. Section 3 describes the structure
of STAT-based sensors. Section 4 discusses the dependencies between modules
and the concept of a valid and meaningful configuration. Section 5 describes how
dependencies are used during the reconfiguration process. Section 6 draws some
conclusions and outlines future work.

2 The STAT Framework

The STAT framework is the result of the evolution of the original STAT tech-
nique and its application to UNIX systems [5-7] into a general framework for
the development of STAT-based intrusion detection sensors [8].

The STAT Technigue. STAT is a technique for representing high-level descrip-
tions of computer attacks. Attack scenarios are abstracted into states, which
describe the security status of a system, and transitions, which model the evo-
lution between states. By abstracting from the details of particular exploits and
by modeling only the key events involved in an attack scenario STAT is able to
model entire classes of attacks with a single scenario, overcoming some of the
limitations of plain signature-based misuse detection systems [9].

The STATL Language. STATL is an extendible language [10] that is used to
represent STAT attack scenarios. The language defines the domain-independent
features of the STAT technique. The STATL language can be extended to ex-
press the characteristics of a particular domain and environment. The extension
process includes the definition of the set of events that are specific to the partic-
ular domain or environment being addressed and the definition of new predicates
on those events. For example, to extend STATL to deal with events produced
by the Apache Web browser one would define one or more events that represent
entries in the application logs. In this case an event would have the fields host,

ident, authuser, date, request, status, and bytes as defined by Apache’s
Common Log Format (CLF) [11]. After having defined new events it may be
necessary to specify specific predicates on those events. For example, the predi-
cate isCGIrequest () would return true if an event is a request for a CGI script.
Event and predicate definitions are grouped in a language extension. Once the
event set and associated predicates for a language extension are defined, it is
possible to use them in a STATL scenario description by including them with
the STATL use keyword. A number of extensions for TCP/IP networks, Sun
BSM audit records [12], and Windows NT event logs have been developed.

STATL scenarios are matched against a stream of events by the STAT core
(described below). In order to have a scenario processed by the STAT core it is
necessary to compile it into a scenario plugin, which is a shared library (e.g.,
a “.so” library in UNIX or a DLL library in Windows). In addition, each lan-
guage extension used by the scenario must be compiled into an extension module,
which is a shared library too. Both STATL scenarios and language extension are
translated into C++ code and compiled into libraries by the STAT development
tools.

The STAT Core. The STAT core represents the runtime of the STATL language.
The STAT core implements the domain-independent, characteristics of STATL,
such as the concepts of state, transition, timer, matching of events, etc. At run-
time the STAT core performs the actual intrusion detection analysis process by
matching an incoming stream of events against a number of scenario plugins. A
running instance of the STAT core is dynamically extended to build a STAT-
based sensor, as described in Section 3.

The CommSTAT communication infrastructure. STAT-based sensors are con-
nected by a communication infrastructure that allows the sensors to exchange
alert messages and control directives in a secure way. CommSTAT messages fol-
low the standard Intrusion Detection Message Exchange Format (IDMEF) [13].
The original IDMEF definition includes the two events Heartbeat and Alert.
This original set of events has been extended to include STAT-related control
messages that are used to control and update the configuration of STAT-sensors.
For example, messages to ship a scenario plugin to a remote sensor and have it
loaded into the core have been added (x-stat-scenario-activate), as well as
messages to manage language extensions and other modules (the message names
are all prefixed with x-stat-, following the extension guidelines of the IDMEF
format). Participation in the CommSTAT communication infrastructure is me-
diated by a CommSTAT proxy that performs preprocessing of messages and
control directives and that supports the integration of third-party tools that are
not based on the STAT framework.

The MetaSTAT control infrastructure. The CommSTAT communication infras-
tructure is used by the MetaSTAT component to exert control over a set of
sensors. The MetaSTAT component is responsible for the following tasks:

STAT sensor

ommSTAT Proxy

STAT sensor

STAT sensor

Fig. 1. Architecture of a web of sensors.

— Collect and store the alerts produced by the managed sensors.
IDMEF alerts are stored in a MySQL relational database. A schema to
efficiently store and retrieve IDMEF alerts has been developed, and a GUI
for the querying and display of stored alerts has been implemented.

— Route alerts to STAT sensors and other MetaSTAT instances.
MetaSTAT components and STAT-based sensors can subscribe for specific
alerts. Alerts matching a subscription are routed through the appropriate
CommSTAT communication channels.

— Maintain a database of available modules and relative dependen-
cies. Each MetaSTAT component is associated with a Module Database of
compiled scenario plugins, language extension modules, and other modules
that will be discussed later. For each module, the database stores the depen-
dencies with respect to both other modules and the operational environment
where the module may need to be deployed. These dependencies are a novel
aspect of the STAT approach and are described in more detail in Section 4.

— Maintain a database of current sensor configurations. MetaSTAT
manages a Sensor Database containing the current components that are ac-
tive or installed at each STAT-based sensor. This “privileged” view of the
deployed web of sensors is the basis for controlling the sensors and plan-
ning reconfigurations of the surveillance infrastructure. The structure of the
database is described in detail in Section 4.

The high-level view of the architecture of the STAT-based web of sensor is
given in Figure 1. The following sections discuss the structure of a single STAT-
based sensor and how its reconfiguration is performed through a MetaSTAT
component.

3 STAT Sensors

STAT sensors are intrusion detection systems that perform localized security
analysis of one or more event streams (operating system audit records, network
traffic, application logs, system calls, etc.).

CommSTAT CommSTAT

@ _.aguage Extension
2 - library
Host /A Event Provider library
(a) Bare Sensor (b) Sensor with Event Provider
Scenario Scenario
Sensor Prototype Sensor Prototype

CommSTAT CommSTAT

L

Y]

O Instances O
wal 0 O O ==t o/ Olo
,
@ Scenaio Plugin library] Responselibrary | peshonse Functions
ST / y ST
Z 2 @
(c) Sensor with Scenario Plugin (d) Scenario Plugin with Responses

Fig. 2. Evolution of a STAT-based sensor.

The architecture of a STAT-based sensor is centered around the STAT core
(see Figure 2). The STAT core is extended with a number of modules that,
together, determine the sensor’s intrusion detection capabilities and behavior.
The configuration of a STAT sensor can be changed at run-time through control
directives sent by the MetaSTAT component responsible for the sensor. A set of
initial modules can be (and usually is) defined at startup time to determine the
initial configuration of a sensor. In the following, an incremental configuration of
a STAT-based sensor will be described to better illustrate the role of each sensor
module, provide a hint of the high configurability of sensors, and describe the
dependencies between the different modules.

When a sensor is started with no modules, it contains only an instance of
the STAT core waiting for events to be processed. The core is connected to a
CommSTAT proxy, which, in turn, is connected to a MetaSTAT instance. This
initial “bare” configuration, which is presented in Figure 2 (a), does not provide
any intrusion detection functionality.

The first step is to provide a source of events. To do this, an event provider
module must be loaded into the sensor. An event provider collects events from
the external environment (e.g., by parsing the Apache server logs, or by obtaining
packets from the network driver), creates events as defined in one or more STAT
language extensions (e.g., the Apache language extension), encapsulates these
events into generic STAT events, and inserts these events into the input queue
of the STAT core. Event providers can be dynamically added to and removed
from a STAT core, and more than one event provider can be active at one time.
For example, both an event provider for Apache events and a Solaris BSM audit
record provider may feed their event streams to the same core. An event provider
is implemented as a shared library. The activation of an event provider is done
through MetaSTAT by requesting the shipping of the event provider shared
library to the sensor and then requesting its activation. An event provider relies
on the event definitions contained in one or more language extension modules. If
these are not available at the sensor’s host, these have to be shipped there as well.
Once both the event provider and the language extensions are available at the
remote host, the event provider is activated. As a consequence, a dedicated thread
of execution is started to execute the event provider. The provider collects events
from the external source, filters out those that are not of interest, transforms
the remaining events into event objects (as defined by the language extension),
encapsulates them into generic STAT events, and then inserts them into the core
input queue. The core, in turn, consumes the events and checks if there are any
STAT scenarios interested in the specific event types. At this point, the core is
empty, and therefore no actual processing is carried out. This configuration is
described in Figure 2 (b).

To start doing something useful, it is necessary to load one or more scenario
plugins into the core. To do this, first a scenario plugin module, in the form
of a shared library, is transferred to the sensor’s host. A plugin may need the
functions of one or more language extension modules. If these are not already
available at the destination host then they are shipped there as well. Once all
the necessary libraries have been transferred to the sensor’s host, the plugin is
loaded into the core, specifying a set of initial parameters. When a plugin is
loaded into the core an initial prototype for the scenario is created. The scenario
prototype contains the data structures representing the scenario’s definition in
terms of states and transitions, a global environment, and a set of activation
parameters. The prototype creates a first instance of the scenario. This instance
is in the initial state of the corresponding attack scenario. The core analyzes the
scenario definition and subscribes the instance for the events associated with the
transitions that start from the scenario’s initial state.

At this point the core is ready to perform event processing. The events ob-
tained by the provider are matched against the subscriptions of the initial in-
stance. If an event matches a subscription, then the corresponding transition
assertion is evaluated. If the assertion is satisfied then the destination state as-
sertion is evaluated. If this assertion is also satisfied then the transition is fired.
As a consequence of transition firing the instance may change state or a new in-

stance may be created. Each scenario instance represents an attack in progress.
The details of scenario processing are described elsewhere [8]. This situation is
presented in Figure 2 (¢), where a scenario plugin has been loaded and there are
currently four active instances of the scenario.

As a scenario evolves from state to state, it may produce some output. A
typical case is the generation of an alert when a scenario completes. Another
example is the creation of a synthetic event. A synthetic event is a STAT event
that is generated by a scenario plugin and inserted in the core event queue. The
event is processed like any other event and may be used to perform forward
chaining of scenarios.

Apart from logging (the default action when a scenario completes) and the
production of synthetic events (that are specified internally to the scenario def-
inition), other types of responses can be associated with scenario states using
response modules. Response modules are collections of functions that can be used
to perform any type of response (e.g., page the administrator, reconfigure a fire-
wall, or shutdown a connection). Response modules are implemented as shared
libraries. To activate a response function it is necessary to transfer the shared
library containing the desired response functionality to the sensor’s host, load
the library into the core, and then request the association of a function with a
specific state in a scenario definition. This allows one to specify responses for any
intermediate state in an attack scenario. Each time the specified state is reached
by any of the instances of the scenario, the corresponding response is executed.
Responses can be shipped, loaded, activated, and removed remotely through the
MetaSTAT component. Figure 2 (d) shows a response library and some response
functions associated with particular states in the scenario definition.

At this point, the sensor is configured as a full-fledged intrusion detection
system. Event providers, scenario plugins, language extensions, and response
modules can be loaded and unloaded following the needs of the overall intrusion
detection functionality. As described above, these reconfigurations are subject to
a number of dependencies that must be satisfied in order to successfully load a
component into the sensor and to have the necessary inputs and outputs available
for processing. These dependencies are managed by the MetaSTAT component,
and they are discussed in the next section.

4 Module Dependencies and Sensor Configurations

The flexibility and extendibility supported by the STAT-based approach is a ma-
jor advantage: the configuration of a sensor can be reshaped in real-time to deal
with previously unknown attacks, changes in the site’s policy, different levels
of concern, etc. Fine-grained configurability requires careful planning of module
installation and activation. This activity can be very complex and error-prone if
carried out without support. For this reason the MetaSTAT component main-
tains a database of modules and their associated dependencies and a database of
the current sensor configurations. These databases provide the support for con-
sistent modifications of the managed web of sensors. In the following, the term

module is used to denote event providers, scenario plugins, response modules,
and language extensions. The term external component is used to characterize
some host facility or service that is needed by an event provider as a source
of raw events or by a response function to perform some action. These compo-
nents are outside the control of MetaSTAT. For example, a BSM event provider
needs the actual BSM auditing system up and running to be able to access audit
records and provide events to the STAT core.

Dependencies between modules can be classified into activation dependen-
cies and functional dependencies. Activation dependencies must be satisfied for
a module to be activated and run without failure. For example, consider a sce-
nario plugin that uses predicates defined in a language extension. The language
extension must be loaded into the core before the plugin is activated. Otherwise,
the plugin activation will fail with a run-time linking error. Functional depen-
dencies are associated with the inputs of a module. The functional dependencies
of a module are satisfied if there exist modules and/or external components that
can provide the inputs used by the module. Note that a module can success-
fully be activated without satisfying its functional dependencies. For example,
suppose that a scenario plugin that uses BSM events has been successfully acti-
vated, but there is no BSM event provider to feed the core with BSM events. In
this case, the scenario is active but completely useless. The inputs and outputs
of the different module types, and the relative dependencies are summarized in
Table 1.

|Module |Inputs |Outputs |Activation Deps |Functional Deps |

Event Provider |External STAT events |Extension modules |External compo-
event stream nents

Scenario Plugin |STAT events,|Synthetic Extension modules [Scenario plugins,
synthetic events Event providers
events

Response Module|Parameters |External Extension modules |External compo-
from plugin |response nents

Language Exten-|None None Extension modules [None

sion

Table 1. Input and output, and dependencies of STAT sensor modules.

Information about dependencies between modules is stored in MetaSTAT’s
Module Database. The schema of the Module Database is shown in Figure 3.

The functional dependencies for a module are partly modeled implicitly by
matching the inputs required by the module with the outputs provided by some
other module. Determining the functional dependencies on other modules re-
quires that two queries be made on the Module Database. The first query gets
the inputs required by the module from the Module Input table. The second

Module Index

Binary
moduleid
moduleid moduleid type
path - name
filename i version
os platform
description

Plugin State moduleid moduleid Activation Dependency
moduleid moduleid
state name dep moduleid
Plugin Parameter)) Module Output
pmart;gule id moduleid moduleid moduleid
filename output type
conf id output id
Response Function moduleid Module Input
odueid moduleid moduleid
ulel
input
function name fnp .type
input id
Functional Dependen
moduleid . ep <y
: moduleid
1N . external component id

Dependency Information

Fig. 3. Schema for the Module Database.

query examines the Module Qutput table to determine which modules are gen-
erating the inputs that were returned from the first query. The results returned
from the second query identify the modules that satisfy the functional depen-
dencies of the original module. The functional dependencies on external compo-
nents are modeled explicitly by the Functional Dependency table. In addition
to dependencies, the Module Database also stores information such as version,
OS/architecture compatibility information, etc.

The Module Database is used by MetaSTAT to automatically determine the
steps to be undertaken when a sensor reconfiguration is needed. Since sensors
do not always start from a “bare” configuration, as shown in Figure 2 (a), it
is usually necessary to modify an existing sensor configuration. Therefore, the
MetaSTAT component maintains a second database called the Sensor Database,
which contains the current configuration for each sensor. A visualization of the
Sensor Database schema is given in Figure 4.

To be more precise, the term configuration is defined as follows: A STAT sen-
sor configuration is uniquely defined by a set of installed and activated modules
and available external components. The term installed is used to describe the
fact that a module has been transferred to and stored on a file system accessible

Installed Plugin

Conf
sensor id <sensor id, moduleid>
module id
conf id

Sensor Index
0 sensor id
Installation Index sensor address External Component

sensor id sensor port sensor id

moduleid sensor platform external component id

Activated plugin Activated response function
sensor id <sensor id, moduleid> sensor id
moduleid moduleid
conf id - function name
prototype id state name
pluginid
scenario prototypeid

Activated module
sensor id
module id

module type

© Activation information

Fig. 4. Schema for the Sensor Database.

by the sensor and in a location known by the sensor. The term activated is used
to describe the fact that a module has been dynamically loaded in a sensor as
the result of a control command from MetaSTAT. The term loaded has the same
meaning as activated in relation to language extension modules.

A configuration can be valid and/or meaningful. A configuration is valid if
all activated modules have all their activation dependencies satisfied. A configu-
ration is meaningful if the configuration is valid and all functional dependencies
are also satisfied.

5 Automated Support for Sensor Reconfigurations

MetaSTAT uses the databases described in the previous section to assist the
Intrusion Detection Administrator (IDA) in reconfiguring a web of sensors. To
better describe the operations involved in a reconfiguration and the support
provided by MetaSTAT, an example will be used.

Suppose that the IDA noted or was notified of some suspicious FTP activity
in a subnetwork inside his! organization. Usually, the IDA would contact the
responsible network administrator and would ask him? to install and/or acti-
vate some monitoring software to collect input data for further analysis. The
IDA might even decide to login remotely to particular hosts to perform manual
analysis. Both activities are human-intensive and require a considerable setup
time.

! By “his” we mean “his or her”.
2 By “him” we mean “her”.

MetaSTAT supports a different process in which the IDA interacts with a
centralized control application (i.e., the MetaSTAT console) and expresses his
interest in having the subnetwork checked for possible FTP-related abuse. This
request elicits a number of actions:

1. The scenario plugins contained in the Module Database are searched for
the keyword “FTP”. More precisely the IDA’s request is translated into the
following SQL query:

SELECT module_id, name, os_platform, description

FROM Module_Index

WHERE (name LIKE ’%ftp)%’ OR description LIKE ’%ftp%’)
AND type="plugin";

The following information is returned:

|modu1e_id1name |os_p1atforn4description
module_1 |wu-ftpd-bovf Linux X86 |BOVF attack against ftpd
module_2 |ftpd-quote-abuse Linux X86 |QUOTE command abuse

module_9 ftpd—protocol—verify|Linux X86 |FTP protocol verifier

The IDA selects the wu-ftp-bovf and ftpd-quote-abuse scenario plugins
for installation.

2. The Module Database is examined for possible activation dependencies. The
wu-ftp-bovf activation dependencies are determined by the following query:

SELECT dep_module_id FROM Activation_Dependency
WHERE module_id="module_1";

The query results (not shown here) indicate that the scenario plugin requires
the ftp language extension. This is because events and predicates defined
in the ftp extension are used in states and transitions of the wu-ftp-bovf
scenario. A similar query is performed for the ftpd-quote-abuse scenario
plugin. The query results indicates that the syslog language extension is
required by the plugin.

3. The Module Database is then searched for possible functional dependencies.
For example in the case of the wu-ftp-bovf scenario the following query is
executed:

SELECT input_id FROM Module_Input WHERE module_id="module_1";

The query returns an entry containing the value FTP_PROTOCOL. This means
that the wu-ftp-bovf scenario uses this type of event as input. Therefore,
the wu-ftp-bovf scenario plugin has a functional dependency on a module
providing events obtained by parsing the FTP protocol. A similar query
indicates that the ftpd-quote-abuse plugin has a functional dependency
on a provider of SYSLOG events.

. These new requirements trigger a new search in the Module Database to find
which of the available modules can be used to provide the required inputs.
SYSLOG events are produced by three event providers: syslogl, syslog2,
and win-app-event. The FTP_ protocol events are produced, as synthetic
events, by the ftp-protocol-verify scenario.

. Both the syslogl and syslog2 event providers require an external source,
which is the syslog facility of a UNIX system. In particular, syslog2 is
tailored to the syslogkd daemon provided with Linux systems. Both event
providers have an activation dependency on the syslog language exten-
sion. The win-app-event event provider is tailored to the Windows NT
platform. It depends on the NT event log facility (as an external compo-
nent) and relies on the NT event log language extension (winevent). The
ftp-protocol-verify is a network-based scenario and, as such, requires a
network event provider that produces events of type STREAM, which are events
obtained by reassembling TCP streams. The scenario has two activation de-
pendencies; it needs both the tcpip and the ftp language extensions. The
first is needed because STREAM events are used in the scenario’s transition
assertions. The second is needed to be able to generate the FTP protocol
synthetic events.

. Events of type STREAM are produced by an event provider called netproc.
This event provider is based on the tcpip language extension, and requires,
as an external component, a network driver that is able to eavesdrop traffic.
. At this point, the dependencies between the modules have been determined
(see Figure 5). The tool now identifies the sensors that need to be reconfig-
ured. This operation is done by querying the Sensor Database to determine
which hosts of the network under exam have active STAT-based sensors.
The query identifies two suitable hosts. Host lucas, a Linux machine, has a
bare sensor installed. Host spielberg, another Linux machine, runs a STAT-
based sensor equipped with the netproc event provider, the tcpip language
extension, and some scenario plugins. Both hosts provide the network driver
and UNIX syslog external component. The tool decides (possibly with help
from the IDA) to install the ftpd-quote-abuse scenario on lucas and the
wu-ftp-bovf scenario on spielberg.

. The syslog language extension is sent to lucas, and it is installed in the
file system. This is done using the following CommSTAT messages:

<x-stat-extension-lib-install id="1">
<extension_lib name="syslog" version="1.0.1">
[... encoded library ...]
</extension-1ib>
</x-stat-extension-lib-install>

<x-stat-extension-lib-activate id="2">
<extension_lib name="syslog" version="1.0.1">
</extension-1ib>

</x-stat-extension-lib-activate>

wu—Fftp-bovf ftpd-quote-abuse
scenario scenario
ﬁ/ \L A |
ftp FTP PROTOCOL syslog SYSLOG
lang ext event lang ext y ¢ O\i
o syslogl syslog2 win-app-event
event provider event provider event provider

ftp-protocol-verify

YAy

Y .

A/\

scenario syslog syslog winevent NTlogging
//A l | lang ext lang ext langext external component
syslogd syslogd
external component external component
ftp tepip STREAM
langext langext event
i o
netproc
event provider
V ¢ E
tepip network-driver
lang ext

external component

Fig. 5. Dependency graph for scenarios wu-ftp-bovf and ftpd-quote-abuse. In the
figure, arrows marked with the letter “A” are used to represent activation dependencies.
Arrows marked with “I” represent the relationship between a module and the input
events required. Arrows marked with an “O” represent the relationship between an
event type and the module that produce that type of event as output. Arrows marked
with “E” represent a dependency on an external component.

The syslog2 event provider is sent, installed, and loaded in the sensor by
means of similar commands. At this point syslog events are being fed to the
core of the sensor on host lucas. The ftpd-quote-abuse scenario plugin is
sent to the host, installed on the file system, and eventually loaded into the
core.

. The ftp language extension is sent to host spielberg. The tcpip language
extension is already available, as is the netproc event provider. There-
fore, the ftp-protocol-verify scenario plugin can be shipped to host
spielberg, installed, and loaded into the core. The scenario starts parsing
STREAM events and producing FTP_PROTOCOL synthetic events. As the final
step, the wu-ftpd-bovf scenario is shipped to host spielberg, installed,
and loaded into the core, where it immediately starts using the synthetic
events generated by the ftp-protocol-verify scenario.

After the necessary reconfigurations are carried out the IDA may decide to

install specific response functions for the newly activated scenarios. A process
similar to the one described above is followed. Response modules, in the form
of shared libraries, may be shipped to a remote host and linked into a sensor.

Additional control commands may then be used to associate states in a scenario
with the execution of specific functions of the response module.

6 Conclusions and future work

Many research and commercial intrusion detection systems implement their in-
trusion detection functionality using a distributed set of sensors. The advantages
of this approach are obvious, but these systems suffer from a number of limita-
tions mainly related to their configurability.

For example, it is not possible to add new event sources to existing sen-
sors; it is difficult, if not impossible, to create, ship, and load new signatures
at run-time; and responses are usually predefined or chosen from a predefined
set. We have implemented a set of components and a control infrastructure that
overcome these limits. The STAT-based framework has been leveraged to realize
a highly-configurable “web of sensors” controlled by a meta-sensor component,
called MetaSTAT. The flexibility of the framework allows the Intrusion Detection
Administrator to perform complex reconfiguration tasks. In addition, by explic-
itly modeling the dependencies between modules it is possible to automatically
generate a valid deployment plan from high-level specifications.

The “web of sensors” is based on the STAT approach but it has been designed
to be open. Third party IDS modules can easily be integrated through Comm-
STAT proxies. Integration of external components is limited to the exchange of
alerts if primitives for the dynamic configuration of sensors are not available.

The STAT framework and the core component have been designed and im-
plemented. The STAT framework has been used to build a number of IDSs,
including two systems for host-based intrusion detection in UNIX and Windows
NT environments, called USTAT and WinSTAT, respectively [5-7], a network-
based intrusion detection system called NetSTAT [14, 15], and a distributed event
analyzer called NSTAT [16]. Two of the systems, namely USTAT and NetSTAT,
have been used in four different DARPA-sponsored evaluations [17,18]. The
CommSTAT communication infrastructure has been completed and distributed
to the intrusion detection community through the IETF idwg mailing list. A first
prototype of the MetaSTAT component that collects alerts from multiple sen-
sors concurrently, stores them in a MySQL alert database and provides the IDA
with a graphical viewer has been developed. In addition, database schemas for
the Module Database and the Sensor Database have been implemented. Most of
the control primitives have been defined and partially implemented. The Meta-
STAT component is also lacking the alert routing functionalities. These will be
the focus of future work.

Acknowledgments

Thanks to Steve Eckmann for providing helpful comments on this paper.
This research was supported by the Defense Advanced Research Projects
Agency (DARPA) and Rome Laboratory, Air Force Materiel Command, USAF,

under agreement number F30602-97-1-0207, by the National Security Agency’s
University Research Program, under agreement number MDA904-98-C-A891,
and by the Army Research Office, under agreement DAAD19-01-1-0484. The
U.S. Government is authorized to reproduce and distribute reprints for Govern-
mental purposes notwithstanding any copyright annotation thereon.

The views and conclusions contained herein are those of the author and
should not be interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of the Defense Advanced Research
Projects Agency (DARPA), Rome Laboratory, the National Security Agency,
the Army Research Office, or the U.S. Government.

References

1. Roesch, M.: Snort - Lightweight Intrusion Detection for Networks. In: Proceedings
of the USENIX LISA ’99 Conference. (1999)

2. Neumann, P.; Porras, P.: Experience with EMERALD to Date. In: First USENIX

Workshop on Intrusion Detection and Network Monitoring, Santa Clara, California

(1999) 73-80

NFR Security: Overview of NFR Network Intrusion Detection System. (2001)

Internet Security Systems: Introduction to RealSecure Version 3.0. (1999)

5. Ilgun, K.: USTAT: A Real-time Intrusion Detection System for UNIX. Mas-
ter’s thesis, Computer Science Department, University of California, Santa Barbara
(1992)

6. Ilgun, K.: USTAT: A Real-time Intrusion Detection System for UNIX. In: Pro-
ceedings of the IEEE Symposium on Research on Security and Privacy, Oakland,
CA (1993)

7. Porras, P.. STAT — A State Transition Analysis Tool for Intrusion Detection.
Master’s thesis, Computer Science Department, University of California, Santa
Barbara (1992)

8. Vigna, G., Eckmann, S., Kemmerer, R.: The STAT Tool Suite. In: Proceedings of
DISCEX 2000, Hilton Head, South Carolina, IEEE Computer Society Press (2000)

9. Ilgun, K., Kemmerer, R., Porras, P.: State Transition Analysis: A Rule-Based
Intrusion Detection System. IEEE Transactions on Software Engineering 21 (1995)

10. Eckmann, S., Vigna, G., Kemmerer, R.: STATL: An Attack Language for State-
based Intrusion Detection. In: Proceedings of the ACM Workshop on Intrusion
Detection Systems, Athens, Greece (2000)

11. : Apache 2.0 Documentation. (2001) http://www.apache.org/.

12. Sun Microsystems, Inc.: Installing, Administering, and Using the Basic Security
Module, 2550 Garcia Ave., Mountain View, CA 94043. (1991)

13. Curry, D., Debar, H. Intrusion Detection Message Exchange For-
mat: Extensible Markup Language (XML) Document Type Definition.
draft-ietf-idwg-idmef-xml1-03.txt (2001)

14. Vigna, G., Kemmerer, R.: NetSTAT: A Network-based Intrusion Detection Ap-
proach. In: Proceedings of the 14" Annual Computer Security Application Con-
ference, Scottsdale, Arizona (1998)

15. Vigna, G., Kemmerer, R.: NetSTAT: A Network-based Intrusion Detection System.
Journal of Computer Security 7 (1999) 37-71

- w

16. Kemmerer, R.: NSTAT: A Model-based Real-time Network Intrusion Detection
System. Technical Report TRCS-97-18, Department of Computer Science, UC
Santa Barbara (1997)

17. Durst, R., Champion, T., Witten, B., Miller, E., Spagnuolo, L.: Addendum to
“Testing and Evaluating Computer Intrusion Detection Systems”. CACM 42
(1999) 15

18. Durst, R., Champion, T., Witten, B., Miller, E., Spagnuolo, L.: Testing and Eval-
uating Computer Intrusion Detection Systems. CACM 42 (1999) 53-61

