An Intrusion Detection System for Aglets

Giovanni Vigna, Bryan Cassell, and Dave Fayram

Department of Computer Science
University of California Santa Barbara
vigna,dfayram,bryanc@cs.ucsb.edu

Abstract. Mobile agent systems provide support for the execution of
mobile software components, called agents. Agents acting on behalf of
different users can move between execution environments hosted by dif-
ferent organizations. The security implications of this model are evident
and these security concerns have been addressed by extending the au-
thentication and access control mechanisms originally conceived for dis-
tributed operating systems to mobile agent systems. Other well-known
security mechanisms have been neglected. In particular, satisfactory au-
diting mechanisms have seldom been implemented for mobile agent sys-
tems. The lack of complete and reliable auditing makes it difficult to an-
alyze the actions of mobile components to look for evidence of malicious
behavior. This paper presents an auditing facility for the Aglets mobile
agent system and an intrusion detection system that takes advantage of
this facility. The paper describes how auditing was introduced into the
Aglets system, the steps involved in developing the intrusion detection
system, and the empirical evaluation of the approach.

Keywords: Mobile Agents, Security, Intrusion Detection, Auditing.

1 Introduction

Mobile agent systems provide a distributed computing infrastructure that sup-
ports the execution of mobile components, called mobile agents [9]. In the most
general case, mobile agents act on behalf of different users and, in addition, the
nodes that compose the infrastructure may be managed by different authorities
(e-g., a university or a private company).

The mobile agent paradigm provides a number of advantages with respect to
the traditional client-server paradigm. The ability to relocate the components of
an application supports service customization, optimized access to distributed
resources, and deployment in a mobile networking environment [25]. On the
other hand, the ability to move and execute code fragments has serious security
implications [8,5,15]. In particular, the recent worm attacks [4, 6] showed that
malicious mobile software is tolerant to eradication and allows one to perform
distributed denial-of-service attacks.

The security issues introduced by mobile agents have been addressed by
extending the authentication and access control mechanisms originally conceived
for distributed systems to address mobility [10]. The goal of authentication and
access control mechanisms is to prevent impersonation and unauthorized access

to system resources. These mechanisms provide little support for the detection of
attacks that either circumvent protection mechanisms or abuse legitimate access
to resources. These attacks can be detected by analyzing the operating system
information generated by the actions performed by users and applications. The
process of collecting this information is called auditing [2].

Meaningful and complete auditing information is a prerequisite for effective
intrusion detection. If the information included in the collected events is not
complete, attacks may go undetected. In addition, intrusion detection may not
be possible at all because attacks may not have a manifestation that can be
identified in the audit trail [32].

Unfortunately, this is the case for mobile agent systems. Most mobile agent
systems provide no auditing mechanisms or are able to produce only incomplete
information about the activity of mobile agents. In addition, different agents
are usually executed within a single user process that acts as the execution
environment (e.g., a Java Virtual Machine). Therefore, the resulting audit trail
at the operating system level contains the actions performed by the execution
environment as a whole and cannot be “sorted” to associate a subset of the audit
records with the execution of a single mobile agent. To overcome this problem,
it is necessary to perform auditing at the agent system level, where meaningful
information about the actions of each agent can be collected.

This paper describes the design and implementation of a facility for the col-
lection of audit trails in the Aglets system [20] and an intrusion detection system
that takes advantage of the auditing information. The auditing system provides
extensive information about the activity of mobile agents running within an
execution environment. This information is leveraged by an intrusion detection
system specifically developed for Aglets. The system allows one to detect attacks
that bypass the authorization mechanisms, abuse legitimate access, or violate the
security policy of an Aglets server.

The paper is structured as follows. Section 2 presents related work on the
topic of auditing and intrusion detection. Section 3 outlines our approach to
detect intrusions in the Aglets system. Section 4 describes how auditing was in-
troduced into the Aglets system. Section 5 presents an intrusion detection system
for Aglets. Section 6 contains a quantitative evaluation of the auditing systems
and shows examples of the use of the intrusion detection system. Section 7 draws
some conclusions and outlines future work.

2 Related Work

Intrusion detection is performed by analyzing one or more input event streams,
looking for the manifestation of an attack. Traditionally, the input stream is
either represented by packets transmitted on a network segment or by the audit
records produced by the auditing facility of an operating system. Examples of
event streams are the audit records generated by the Solaris Basic Security Mod-
ule (BSM) [27], traffic logs collected using tcpdump [28], and syslog messages.

Historically detection has been achieved following two different approaches:
anomaly detection and misuse detection. Anomaly detection relies on models
of the “normal” behavior of a computer system. These models may focus on
the users, the applications, or the network. Behavior profiles may be built by
performing statistical analysis on historical data [12,17] or by using rule-based
approaches to specify behavior patterns [19, 34, 35,26]. Anomaly detection com-
pares actual usage patterns against the established profiles to identify abnormal
patterns of activity. Misuse detection systems take a complementary approach.
The detection tools are equipped with a number of attack descriptions. These
descriptions (or “signatures”) are matched against the stream of audit data look-
ing for evidence that the modeled attack is occurring [14,21,24]. Misuse and
anomaly detection both have advantages and disadvantages. Misuse detection
systems can perform focused analysis of the audit data and usually they pro-
duce few, if any, false positives. At the same time, misuse detection systems can
detect only those attacks that have been modeled. Anomaly detection systems
have the advantage of being able to detect previously unknown attacks. This
advantage is paid for with a large number of false positives and the difficulty of
training a system for a very dynamic environment.

Mobile agents have sometimes been advocated as a means to perform in-
trusion detection in distributed systems [13,16,3,29]. In this context, intrusion
detection systems are designed as mobile applications that roam the network to
detect attacks and track intruders. The approach described in this paper takes
a different perspective. The approach focuses on the detection of attacks against
mobile agent systems and, in particular, against Aglets. Detection is achieved
by instrumenting the Aglets system to produce events about the activity of mo-
bile agents and then using a misuse detection tool to analyze the event stream.
Similar approaches to auditing of mobile code have been proposed for the An-
chor Toolkit [22] and to support policy verification for mobile programs [11].
Unfortunately, the former does not provide complete information about agents
activity and, to the best of our knowledge, has not been implemented. The lat-
ter does not take into account the mobile agent paradigm and focuses on policy
specification and access control for code on demand.

3 Architecture

The goal of our research is to develop mechanisms, techniques, and tools to sup-
port intrusion detection in the context of mobile agent systems. The approach
includes the design and implementation of mechanisms for the collection of com-
plete auditing information about mobile agent execution and the development
of an intrusion detection system that uses the collected audit trails to detect
attacks against both the mobile agents and the execution environments.

This paper presents the application of the approach to a particular mobile
agent system, namely Aglets, version 2.0.2. Aglets is a well-known mobile agent
system whose sources have been made available through the SourceForge open-
source initiative [1]. In the Aglets system, mobile agents are called “aglets” and

aglet Attack Scenarios

=y

Adglets Server

Operating System

Fig. 1. An intrusion detection system for Aglets.

they are implemented as threads in a Java Virtual Machine, which constitutes
the execution environment!.

The system provides authentication and access control mechanisms [18], but
it does not provide an auditing facility that produces information about the
activity of mobile agents. To detect attacks performed by aglets, we extended
the Aglets system to produce auditing information. In addition, we developed
a new intrusion detection system, called AgletSTAT, to analyze the auditing
information and identify evidence of malicious behavior. The resulting system
allows one to detect attacks against an Aglets server. Figure 1 shows the high-
level architecture of the system. The grayed components are the ones that have
been developed to implement auditing in Aglets and to build the AgletSTAT
intrusion detection system.

The following sections provide details about the process followed to instru-
ment the Aglets system to produce auditing information and describe the Aglet-
STAT intrusion detection system.

4 Instrumenting the Aglets System

The open-source nature of the Aglets system allowed for the modification of the
server’s code to intercept the security-relevant actions performed by aglets and
log complete information about the identity of an aglet, the requested operation,
the parameters of the request, the target of the operation, and the outcome of
the request.

The interception of security-relevant operations was achieved by instrument-
ing the primitives provided by the Aglets system to support agent interaction

! In the paper we use the term “Aglets” to denote the Aglets system, the term “Aglets
server” to denote the execution environment, and the term “aglet” to denote a mobile
agent.

with code that logs the information about the requested operation and the iden-
tity of the involved parties. In addition, the Java Security Manager implemen-
tation provided with the system was extended to log the parameters of both
successful and failed operations.

The aglets interaction procedures that were instrumented are create, clone,
dispose, dispatch, and retract. In addition, the Java Security Manager was
modified to log detailed information about system-level operations. For example,
logging was implemented for file operations (e.g., open, close, read, and write),
socket operations (e.g., accept and listen), and system property operations (for
example, the request to modify the java.home property).

To log these events, it was necessary to access the information about an
executing aglet from its corresponding Java thread. A method was added to the
AgletThread class. The method returns the aglet’s AgletInfo structure, which
contains all the information necessary to identify the aglet.

The logs produced by the auditing system are in XML format. An audit trail
associated with the execution of an Aglets server is an XML document containing
a series of events. The structure of an event is designed to accommodate a variety
of actions that are relevant in the Aglets system. Each event contains a source,
an action, and a result. An example of an event element is shown in Figure 2.

<event timestamp="Sun Jun 09 15:18:55 PDT 2002"
server="aglets.mobilecode.net">
<source>
<server name="aglets.mobilecode.net" />
</source>
<action type="AgletAction create" >
<target>
<server name="aglets.mobilecode.net" />
</target>
</action>
<result status="success" type="aglet">
<aglet id="971045aab1lcefd03"
creationtime="1023661135255"
class="examples.hello.HelloAglet"
origin="atp://aglets.mobilecode.net:4434/"
codebase="atp://home.greetings.com:4434/" />
</result>
</event>

Fig. 2. An example of an event entry in the Aglets audit trail.

The source element is used to specify the originator of an action. The origi-
nator is either a server (which is usually the local server) or an aglet. The identity
of the source is specified in the name property.

The action element is used to specify the operation performed by the source.
This element contains a type property that defines the type of the action. In
the case of actions that are specific to the Aglets system, the type property
contains the keyword AgletAction, followed by the name of the operation in-
voked (e.g., “clone”). In the case of actions involving Java security permissions,
the type property contains the name of the permission’s class (for example,
java.io.FilePermission) followed by the actions associated with the permis-
sion (for example, “execute”). A target sub-element is included within the
action element if the action requires additional information to specify the ob-
ject of an operation.

The result element is used to specify the outcome of the operation. This
element contains the property status that indicates the success or failure of the
action. The property type specifies the type of data enclosed within the result
tag. If there is no result data, the result element is empty and the type property
is set to "none”.

5 An Intrusion Detection System for Aglets

The information generated by the auditing facility of Aglets is used as input to an
intrusion detection system, called AgletSTAT. AgletSTAT has been developed by
leveraging the STAT framework [33]. The STAT framework provides a platform
for the development of intrusion detection sensors by extending a generic runtime
with domain-specific components.

The STAT framework is centered around three concepts: the STAT tech-
nique, the STATL language, and the STAT Core [31]. The STAT technique is
used to represent high-level descriptions of computer attacks. Attack scenarios
are abstracted into states, which describe the security status of a system, and
transitions, which model the evolution between states.

STATL is an extensible language [7] that is used to represent STAT attack
scenarios. The language defines the domain-independent features of the STAT
technique. The STATL language can be extended to express the characteristics
that are specific to a particular domain. The extension process includes the
definition of a set of C++ classes that represent the events in the event stream to
be analyzed. In addition, the language is extended with types and predicates that
support the definition of events and the testing of domain-specific properties.

Event and predicate definitions are grouped in a language extension module.
The module is compiled into a dynamically linked library (i.e., a “.so” file in
a UNIX system or a DLL file in a Windows system). Once the event set and
associated predicates for a language extension are available, it is possible to use
them in a STATL scenario description by including them with the STATL use
keyword.

STATL scenarios are matched against a stream of events by the STAT Core.
The STAT Core represents the runtime of the STATL language. The STAT
Core implements the domain-independent characteristics of STATL, such as the
concepts of state, transition, timer, matching of events, etc. At run-time the

STAT Core performs the actual intrusion detection analysis process by matching
an incoming stream of events against a number of attack scenarios.

The input event stream is provided by one or more event providers. An
event provider collects events from the external environment (e.g., by obtaining
packets from the network driver), creates events as defined in one or more STAT
language extensions, encapsulates these events into generic STAT events, and
inserts these events into the input queue of the STAT core.

In summary, a STAT-based sensor is created by developing a language exten-
sion that describes the particular domain of the application, an event provider
that retrieves information from the environment and produces STAT events, and
attack scenarios that describe attacks in terms of patterns of STAT events.

The AgletSTAT intrusion detection system was developed following the pro-
cess outlined above. AgletSTAT was built by developing a language extension
module that defines Aglets-specific events, an event provider that parses Aglets
audit trails and generates Aglets events, and a number of scenarios that detect
attacks by analyzing the Aglets event stream.

The AgletSTAT language extension contains the definition of the Aglets
event, auxiliary types, and Aglets-specific predicates. Figure 3 shows a simplified
version of the class for the Aglets event, which is an abstraction of an entry in
the audit log generated by the Aglets auditing facility.

class AgletsEvent : public STATExtEvent {

public:
Time timestamp; // Timestamp
AgletsComponent source; // Originator of this event
AgletsAction action; // Action performed
AgletsComponent target; // Target of this action
bool outcome; // Outcome of the operation

AgeltsActionResult result; // Result of the operation

[...]

Fig. 3. The AgletsEvent defined in the AgletSTAT language extension.

The AgletSTAT event provider reads the events stored in the audit log file
as they are generated. The event provider parses the XML representation of the
events and creates the corresponding AgletsEvent objects. These objects are
encapsulated into STAT events and inserted in the STAT Core event queue. The
STAT Core extracts the events from the event queue and passes them to the
active attack scenarios for analysis (see Figure 1).

Attacks are represented by specifying state-transition patterns over the stream
of AgletsEvent events. An example attack scenario is shown in Figure 4. The
scenario detects an aglet attempting to perform a portscan against the local

firstProbe ‘?J%r toFinal
0 scanning end

use agletstat;

scenario portscan(int threshold)

{
global HashTable cloneWatch;
HashTable portWatch;
string agletid;
int count = 0;
initial state sO {}
state scanning {}
state end {
{stat_log("Aglet %s is performing a portscan", agletid);}
}
transition firstProbe (sO->scanning) nonconsuming {
[AgletsEvent a]:
(a.action.matches("java.net.SocketPermission connect,resolve") &&
! (cloneWatch.contains(a.source.id)) &&
(a.target.name.matches("127.0.0.1")))
{ count++;
agletid = a.source.id;
cloneWatch.put(agletid) ;
portWatch.put(a.target.port); }
}
transition counter (scanning->scanning) consuming {
[AgletsEvent a]:
(a.action.matches("java.net.SocketPermission connect,resolve") &&
(a.source.id == agletid) &&
(a.target.name.matches("127.0.0.1"))
(! (portWatch.contains(a.target.port)))
{ count++; }
}
transition toFinal (scanning->end) consuming {
[AgletsEvent a]:
(count > threshold)
{ cloneWatch.delete(agletid); }
}
}

Fig. 4. An AgletSTAT attack scenario that detects a portscan. The scenario has been
simplified with respect to the original, for the sake of exposition. For a detailed de-
scription of STATL syntax and semantics see [7]

Aglets server. The attack is detected by counting the number of attempted con-
nections to different ports on the local host and alerting when a predetermined
threshold is reached.

A number of STATL scenarios have been developed to detect disclosure of
sensitive information (such as accessing the password file on a UNIX system),
denial-of-service attacks, and the scanning of remote systems. Note that STATL
scenarios can also be used to specify intended aglet behavior. In this case, a sce-
nario contains a state-transition description of the correct sequence of operation
to be performed by an aglet. Deviations from the specification would then be
detected by the system.

6 Evaluation

The evaluation of the prototype implementation addresses both the auditing sys-
tem and the intrusion detection tool. The auditing system has been evaluated
quantitatively by determining the overhead introduced by the logging proce-
dures. The intrusion detection tool has been evaluated from the functionality
point of view by running malicious aglets and analyzing the effectiveness of the
detection process.

6.1 The Auditing System

The evaluation of the auditing system was carried out on a system with dual
Celeron CPUs clocked at 533 MHz, 384 MB of RAM, and an IBM 7200 rpm hard
disk with a DMA-33 interface. The operating system was Linux, kernel version
2.4.16, with Java SDK 1.3.1.

To test the overhead introduced by the auditing system three aglets were
developed, namely CpuBound, IOBound, and Mized. The CpuBound aglet per-
forms purely computational operations with doubles, integers, and longs. The
I0Bound aglet is designed to stress-test the auditing system. The aglet simply
opens and closes files in a loop, flooding the auditing system with logging re-
quests. The Mized aglet was designed to be a compromise between CpuBound
and IOBound. This aglet opens a file and writes some data to it while doing
some computations. Then, the aglet closes the file and opens it again to read the
data, while doing more computations. All the aglets have the ability to spawn a
specified number of clones of themselves.

Each aglet was run on both the original Aglets system and the instrumented
version with 0, 9, and 24 clones, resulting in a total of 1, 10, and 25 aglets
running simultaneously. Each test was executed 10 times. The CpuBound aglet
was run for 50 million iterations with 1 aglet, 10 million iterations per aglet with
10 aglets, and 4 million iterations with 25 aglets. The IOBound aglet was run
for 20 thousand iterations with 1 aglet, 2 thousand iterations with 10 aglets, and
one thousand iterations with 25 aglets. The Mized aglet was run for 3 thousand
iterations with 1 aglet, 500 iterations with 10 aglets, and 200 iterations with 25

aglets. The number of iterations for each test was chosen so that all the tests
would take are roughly the same time. The setup was identical for each test.

The results of the tests are provided in Table 1. The table contains the execu-
tion time required by each test, in milliseconds. An average value is provided for
each set of tests. The performance overhead is computed comparing the results
for the original system with the results for the instrumented version.

CpuBound IOBound Mized
aglets| 1 10 25 [1 10 25 | 1 10 25
Original Aglets

63,834 63,120 63,987| 24,455 26,265 37,833 |51,475 49,267 50,655
62,046 62,663 63,852| 24,793 25,913 36,384 |51,834 48,365 50,137
62,050 62,871 63,862| 24,145 25,681 36,936 |52,075 48,679 50,453
62,064 62,859 63,869(24,299 25,938 36,657 |51,921 48,600 50,371
62,104 63,179 64,102| 24,453 26,285 36,775 |52,458 48,347 50,383
62,066 62,810 63,916| 24,559 26,182 36,160 |52,008 48,584 50,830
62,067 62,820 64,004| 24,186 25,898 36,515 |51,771 48,749 50,316
62,047 62,716 64,173| 24,536 26,203 36,438 51,881 48,646 50,788
62,046 63,080 64,298| 24,298 25,764 36,375 |52,770 49,244 50,743
62,068 62,789 64,290| 24,601 25,958 36,697 |51,521 48,531 50,565
Mixed|62,239 62,891 64,035| 24,433 26,009 36,677 |51,971 48,701 50,524

Modified Aglets
63,842 63,491 64,212 72,978 60,845 78,860 | 61,519 59,221 60,354
63,854 62,757 63,962| 72,625 59,569 78,013 | 62,771 59,032 59,484
62,045 62,957 63,844| 72,008 59,518 78,558 | 59,660 58,595 60,013
62,068 63,012 63,933| 71,849 59,603 77,882 | 59,655 58,717 59,541
62,086 62,963 64,833| 71,540 59,799 78,484 | 59,228 58,215 59,586
62,047 62,850 63,983| 71,883 59,554 78,254 | 59,920 58,830 59,334
62,127 63,015 63,974 71,713 59,675 78,393 | 60,067 58,305 59,746
62,098 62,993 64,951| 71,892 60,202 78,684 | 59,705 58,853 60,109
62,044 63,021 64,525 71,816 59,891 78,992 | 59,513 58,287 59,885
62,046 62,996 64,064 71,824 59,836 78,711 | 59,589 58,521 59,684
Mixed|62,426 63,006 64,228| 72,013 59,849 78,483 |60,163 58,658 59,774

Overhead
| [0.30% 0.18% 0.30%194.74% 130.11% 113.98%]15.76% 20.44% 18.31%

Table 1. Performance evaluation of the modified Aglets system.

The impact of auditing is clear in the case of the IOBound aglet. This aglet
represents the absolute worst possible case for the performance of the auditing
system. Every time the IOBound aglet accesses a file, the logging system has
to log the request, which creates considerable overhead. The worst case shows a
three-fold increase in time with respect to the original Aglets system. The Mized?

2 Note that although this aglet is called “Mized”, the aglet is still very file-system
intensive and generates a large number logging requests.

aglet produced an overhead between 15% and 20%. This overhead is comparable
to the overhead introduced by operating system-level auditing facilities [23]. Note
that the auditing mechanism introduced into Aglets can be selectively disabled.
The tests described here were performed with full logging.

6.2 Evaluating the Intrusion Detection System

The evaluation of the intrusion detection functionality of AgletSTAT was per-
formed by developing a number of malicious aglets and STATL scenarios to
detect the attacks.

A first class of malicious aglets perform denial-of-service attacks that at-
tempt to monopolize and/or overload system resources in various ways. The
first example is the CloneBomb aglet. This aglet generates hundreds of clones of
itself. The cloned aglets also generate clones of themselves in a recursive fash-
ion. While inelegant, this attack is extremely effective at monopolizing system
resources and proved to be difficult to halt because explicitly disposing of one
aglet has no effect. Fortunately, the auditing facility added to the Aglets system
logs all aglet-level actions. Therefore, it was possible to develop a scenario to de-
tect excessive cloning. A simple scenario could shut down the server in the case
of a clone attack, while a more sophisticated scenario could attempt to explicitly
kill all cloning aglets.

Another type of denial-of-service attack proved to be undetectable. In this
attack, an aglet, called WindowBomb, simply spams the screen with a large num-
ber of windows. The aglet uses a collection object to prevent garbage collection
of the window objects. Window creation operations cannot be logged properly
because the Java security model does not allow for the interception of these
events. The WindowBomb aglet would be difficult to stop if combined with the
CloneBomb aglet, although in this case the attack would generate copious audit
information and would be easily detected.

A second class of attacks exploits the aglet interaction procedures provided
by the Aglets system. An example of this attack is an aglet called KillBomb
that sends a ”dispose” message to every other aglet in the system. The actions
necessary to perform this attack are clearly visible in the logs, and a STAT
scenario has been developed to detect the attack.

The test of the intrusion detection system also included the execution of at-
tacks that attempt to access security-relevant system properties (e.g., java.home
or user.name) and sensitive files in the operating system (e.g., /etc/passwd).
These attacks were blocked by the Java Security Manager and logged by the
auditing system. STAT scenarios to detect these attempts were developed.

7 Conclusions and Future Work

The goal of our research work is to develop mechanisms and tools to perform
intrusion detection in the context of mobile agent systems. Detection of mali-
cious activity performed by the agents is achieved by instrumenting a mobile

agent system to generate complete and meaningful auditing information and
then analyzing the audit trail using an intrusion detection system.

This paper introduces the general approach and describes its application to
the Aglets mobile agent system. The Aglets system was extended to generate au-
diting information about the actions of mobile agents. In addition, a STAT-based
sensor was developed to analyze the audit trail and a number of attack scenarios
were developed. The overhead of the auditing system and the effectiveness of
detection were evaluated.

Future work will focus on extending this approach in a number of ways. First
of all, we will take advantage of the lessons learned in developing our prototype to
design a system-independent auditing facility for mobile agent systems. By doing
this, a number of mobile agent systems can benefit from the services provided by
the auditing mechanism. In order for the auditing facility to be easily included
into different mobile agent systems, it is necessary to define both a standardized
service interface and a common audit record format. A well-defined common
audit trail format would be beneficial to both the intrusion detection and the
mobile agent communities. It would support component and preprocessor reuse,
simplify data sharing among different systems, and allow for the merging of
different event streams.

As a second step, we plan to investigate how intrusion detection can be
performed on audit trails collected on different execution environments. Mobile
agents can roam from server to server and generate an audit trail at each of
the visited hosts. As a consequence, the manifestation of an intrusion may span
different hosts or even different mobile agent systems. Therefore, it is necessary
to devise a mechanism to reliably collect the audit streams associated with the
entire lifetime of an agent. Unfortunately, mobile agent systems may be admin-
istered by different authorities with different levels of security and conflicting
goals. The collection mechanism should ensure that the audit records associated
with the actions of an agent within a server cannot be modified illegally by either
the server or the roaming agent.

We plan to build on the cryptographic tracing mechanism introduced in [30].
The mechanism generates a chain of signed checksums of the agent’s state and
audit trail. The signed checksums are computed at each of the servers visited by
an agent. This mechanism makes it impossible for either a server or an agent to
tamper with the agent audit trail without being detected. The collected traces
are the basis for detecting both attacks against mobile agent systems and attacks
against mobile agents.

Acknowledgments

We would like to thank prof. Richard Kemmerer for his comments on early drafts
of this work. In addition, we want to thank the anonymous reviewers for their
constructive comments that improved the quality of the paper. In particular, we
would like to thank one of the reviewers (and give him/her credit) for pointing

out a problem in the tracking of the identities of aglets and for providing a viable
solution to the problem.

References

>

10.

11.

12.

13.

14.

15.

16.

17.

18.

. The Aglets Software Development Kit (ASDK). http://sourceforge.net/projects/-

aglets/, June 2002.

J.P. Anderson. Computer Security Threat Monitoring and Surveillance. James P.
Anderson Co., Fort Washington, April 1980.

J.S. Balasubramaniyan, J.O. Garcia-Fernandez, D. Isacoff, E.H. Spafford, and
D. Zamboni. An Architecture for Intrusion Detection Using Autonomous Agents.
In Proceedings of ACSAC ’98, pages 13-24, 1998.

CERT/CC. “Code Red Worm” Exploiting Buffer Overflow In IIS Indexing Service
DLL. Advisory CA-2001-19, July 2001.

D.M. Chess. Security Issues in Mobile Code Systems. In G. Vigna, editor, Mobile
Agents and Security, volume 1419 of LNCS, pages 1-14. Springer-Verlag, June
1998.

CIAC. The Ramen Worm. Information Bulletin L-040, February 2001.

S.T. Eckmann. The STATL Attack Detection Language. PhD thesis, Department
of Computer Science, UCSB, Santa Barbara, CA, June 2002.

W.M. Farmer, J.D. Guttman, and V. Swarup. Security for Mobile Agents: Issues
and Requirements. In Proc. of the 19** National Information Systems Security
Conf., pages 591-597, Baltimore, MD, USA, October 1996.

A. Fuggetta, G.P. Picco, and G. Vigna. Understanding Code Mobility. IEEE
Transactions on Software Engineering, 24(5):342-361, May 1998.

R.S. Gray, D. Kotz, G. Cybenko, and D. Rus. D’Agents: Security in a multiple-
language, mobile-agent system. In G. Vigna, editor, Mobile Agents and Secu-
rity, volume 1419 of Lecture Notes in Computer Science, pages 154-187. Springer-
Verlag, 1998.

B. Hashii, S. Malabarba, R. Pandey, and M. Bishop. Supporting reconfigurable
security policies for mobile programs. Computer Networks, 33(1-6):77-93, June
2000.

Paul Helman and Gunar Liepins. Statistical Foundations of Audit Trail Analysis for
the Detection of Computer Misuse. In IEEE Transactions on Software Engineering,
volume Vol 19, No. 9, pages 886-901, 1993.

G. Helmer, J.S. K. Wong, V. Honavar, and L. Miller. Intelligent Agents for Intru-
sion Detection. In Proceedings of the IEEE Information Technology Conference,
pages 121-124, Syracuse, NY, September 1998.

K. Ilgun, R.A. Kemmerer, and P.A. Porras. State Transition Analysis: A Rule-
Based Intrusion Detection System. IEEE Transactions on Software Engineering,
21(3):181-199, March 1995.

W. Jansen and T. Karygiannis. Mobile Agent Security. NIST Special Publication
800-19, August 1999.

W. Jansen, P. Mell, T. Karygiannis, and D. Marks. Applying mobile agents to
intrusion detection and response. Technical Report 6416, NIST, October 1999.
H. S. Javitz and A. Valdes. The NIDES Statistical Component Description and
Justification. Technical report, SRI International, Menlo Park, CA, March 1994.
G. Karjoth, D. Lange, and M. Oshima. A Security Model for Aglets. In G. Vigna,
editor, Mobile Agents and Security, volume 1419 of LNCS. Springer, 1998.

19

20.

21.

22.

23.

24.

25.

26.

27.

28.
29.

30.

31.

32.

33.

34.

35.

C. Ko, M. Ruschitzka, and K. Levitt. Execution Monitoring of Security-Critical
Programs in Distributed Systems: A Specification-based Approach. In Proceedings
of the 1997 IEEE Symposium on Security and Privacy, pages 175-187, May 1997.
Danny B. Lange and Mitsuru Oshima. Programming and Deploying Java Mobile
Agents with Aglets. Addison-Wesley Longman, 1998.

U. Lindqvist and P.A. Porras. Detecting Computer and Network Misuse with
the Production-Based Expert System Toolset (P-BEST). In IEEE Symposium on
Security and Privacy, pages 146-161, Oakland, California, May 1999.

S. Mudumbai, A. Essiari, and W. Johnston. Anchor Toolkit, 1999.

S. Nitzberg. Performance benchmarking of unix system auditing. Master’s thesis,
Monmouth College, August 1994.

M. Roesch. Snort - Lightweight Intrusion Detection for Networks. In Proceedings
of the USENIX LISA 99 Conference, November 1999.

Gruia-Catalin Roman, Gian Pietro Picco, and Amy L. Murphy. Software Engineer-
ing for Mobility: A Roadmap. In A. Finkelstein, editor, The Future of Software
Engineering, pages 241-258. ACM Press, 2000.

F. Schneider. Enforceable security policies. ACM Transactions on Information
and System Security, 3(1):30-50, February 2000.

Sun Microsystems, Inc. Installing, Administering, and Using the Basic Security
Module. 2550 Garcia Ave., Mountain View, CA 94043, December 1991.
Tcpdump and Libpcap Documentation. http://www.tcpdump.org/, June 2002.
A. Tripathi, T. Ahmed, S. Pathak, A. Pathak, M. Carney, M. Koka, and P. Dokas.
Active Monitoring of Network Systems using Mobile Agents. Technical report,
Department of Computer Science, University of Minnesota, May 2002.

G. Vigna. Cryptographic Traces for Mobile Agents. In G. Vigna, editor, Mobile
Agents and Security, volume 1419 of LNCS. Springer-Verlag, June 1998.

G. Vigna, S. Eckmann, and R. Kemmerer. The STAT Tool Suite. In Proceedings
of DISCEX 2000, Hilton Head, South Carolina, January 2000. IEEE Computer
Society Press.

G. Vigna, S.T. Eckmann, and R.A. Kemmerer. Attack Languages. In Proceedings
of the IEEFE Information Survivability Workshop, Boston, MA, October 2000.

G. Vigna, R.A. Kemmerer, and P. Blix. Designing a Web of Highly-Configurable
Intrusion Detection Sensors. In W. Lee, L. Me, and A. Wespi, editors, Proceed-
ings of the 41" International Symposiun on Recent Advances in Intrusion Detec-
tion (RAID 2001), volume 2212 of LNCS, pages 69-84, Davis, CA, October 2001.
Springer-Verlag.

D. Wagner and D. Dean. Intrusion Detection via Static Analysis. In Proceedings
of the IEEE Symposium on Security and Privacy, Oakland, CA, May 2001. IEEE
Press.

C. Warrender, S. Forrest, and B.A. Pearlmutter. Detecting intrusions using system
calls: Alternative data models. In IEEE Symposium on Security and Privacy, pages
133-145, 1999.

