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ABSTRACT

Models based on system calls are a popular and common ap-
proach to characterize the run-time behavior of programs.
For example, system calls are used by intrusion detection
systems to detect software exploits. As another example,
policies based on system calls are used to sandbox appli-
cations or to enforce access control. Given that malware
represents a significant security threat for today’s comput-
ing infrastructure, it is not surprising that system calls were
also proposed to distinguish between benign processes and
malicious code.

Most proposed malware detectors that use system calls
follow a program-centric analysis approach. That is, they
build models based on specific behaviors of individual appli-
cations. Unfortunately, it is not clear how well these mod-
els generalize, especially when exposed to a diverse set of
previously-unseen, real-world applications that operate on
realistic inputs. This is particularly problematic as most
previous work has used only a small set of programs to mea-
sure their technique’s false positive rate. Moreover, these
programs were run for a short time, often by the authors
themselves.

In this paper, we study the diversity of system calls by
performing a large-scale collection (compared to previous
efforts) of system calls on hosts that run applications for reg-
ular users on actual inputs. Our analysis of the data demon-
strates that simple malware detectors, such as those based
on system call sequences, face significant challenges in such
environments. To address the limitations of program-centric
approaches, we propose an alternative detection model that
characterizes the general interactions between benign pro-
grams and the operating system (OS). More precisely, our
system-centric approach models the way in which benign
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programs access OS resources (such as files and registry en-
tries). Our experiments demonstrate that this approach cap-
tures well the behavior of benign programs and raises very
few (even zero) false positives while being able to detect a
significant fraction of today’s malware.

Categories and Subject Descriptors
D.2.8 [OPERATING SYSTEM]: Security and Protection

General Terms
Security

Keywords
System Call, Malware, Anomaly-Based Detector

1. INTRODUCTION

Malicious code is a significant problem and the root cause
of many security threats on the Internet. For example,
the majority of spam mails are sent by malware-infected
hosts [12], botnets are responsible for large-scale denial of
service attacks, and malicious code is used by cyber crimi-
nals to compromise online banking accounts [11].

Given the importance and the security impact of malware,
it is not surprising that there exists a significant body of re-
search, both in the scientific community and the commercial
world, on ways to protect machines from becoming infected
and on techniques to detect and contain malware programs
once they are on the host. The most popular approach to
identify malware is based on signatures. These signatures
are typically byte strings (or instruction sequences) that are
characteristic for a particular malware instance or a fam-
ily of malicious code [27]. Unfortunately, code obfuscation
and polymorphism have long proved to be effective tools in
the arsenal of a malware author to evade signature-based
detection.

To address the limitations of signature-based detection
techniques, behavior-based detection was introduced as a
novel approach to identify malicious code [5, 15]. Behavior-
based detectors do not examine the (static) content of a
binary, but rather focus on the (dynamic) actions that the
program performs, or might perform. The idea is that even



when the syntactic layout of the program is different, the
semantics of the code should remain unchanged between
polymorphic variants of the same malware (or even, between
different members of the same malware family).

Arguably the most popular way to characterize the be-
havior of programs is based on some kind of analysis of the
system calls (or Win32 API functions) that a program in-
vokes; or that it can invoke, in case the code is examined
statically. Various models range from looking at sequences
of system calls [22], over bags of system calls [13], to system
call patterns based on data flow dependencies [21, 15]. Yet
other techniques look at individual system calls, but take
into account argument information [14].

In most cases, authors achieved good results with system-
call-based malware detectors, and they reported high suc-
cess rates with low numbers of false positives. However,
a closer examination of the presented results reveals that
most experiments are performed on a relatively small scale.
In particular, this is true for the analysis of false positives.
That is, authors collect traces only for a small set of benign
applications. In addition, these programs are exercised in
a limited fashion, often using synthetic inputs or launching
simple test cases. As a result, it is not clear whether the
observed system call traces produced by these benign appli-
cations are representative for the diverse set of applications
that is used by actual users. Moreover, in most cases, the
experiments are performed on a single machine. It is not
clear how the detection results will generalize to a larger in-
stallation base. Thus, the reported number of false positives
might be underestimated.

For this paper, we set out to analyze the diversity of sys-
tem call information and the robustness of simple detection
techniques when looking at data that is collected on a larger
scale (especially when compared to previous efforts, as dis-
cussed in Section 5). To this end, we developed a light-
weight system call collection module that was installed on
ten machines that were used by people to carry out their
normal activities. Over a period of several weeks, these
modules collected more than 1.5 billion system calls that
were invoked by 362 thousand operating system processes.
In total, we observed 242 different applications.

Our analysis of the collected data shows that there is a
large diversity in the system calls that benign programs in-
voke. This makes it difficult for system-call-based detectors
to establish a concise model of normality that allows for
a clean separation between acceptable and malicious behav-
ior. In other words, the fact that a previously unseen system
call sequence is observed is not a good indication that the
process is malicious. It might just be that an existing ap-
plication is used in an unexpected fashion, or that a new,
benign application is installed.

A problem with many behavior-based detection techniques,
especially those that focus on system calls, is that they fol-
low a program-centric approach. That is, these techniques
aim to model the execution of individual programs. As a re-
sult, the models lack context that captures how benign pro-
grams — in general — interact with their environment, and
in particular, the operating system. Also, detectors often
take a narrow view on the execution history of a program
(such as looking at a sliding window of k consecutive system
calls). This myopic view fails to capture program behavior
at a higher level of abstraction. The result is that the mod-
els are specific to a small set of benign applications (those

that were used for training). However, they fail to identify
activity that is common, and characteristic, to benign ap-
plications in general. As a result, detectors raise an alert
whenever something “new” is encountered. Typically, this
leads to (unacceptably) high false positive rates.

In this paper, we propose a system-centric view to model
the activity of benign programs. More precisely, we argue
that benign programs in general follow certain ways in which
they use OS resources (such as the file system and the reg-
istry). For example, programs typically write only to their
own directories (the ones they create as part of the instal-
lation) and to temporary directories. As another example,
certain regions in the registry are only read, but never writ-
ten. Malicious programs, on the other hand, often attempt
to tamper with other applications and critical system set-
tings, and hence, write to resources that benign applications
never touch.

Leveraging the insights from our observation of many be-
nign program executions, we propose techniques to auto-
matically generate an access activity model that captures
how programs interact with operating system resources. Of
course, this model needs to abstract from individual pro-
grams and learn, for example, that the folder c:\Program
Files contains private directories (these are folders that are
supposed to be written only by their respective “owners”).
Thus, even when our access activity model is deployed on
a system that has a program installed that was never seen
before, our model accounts for the fact that this program
is expected (and allowed) to write to its sub-folder under
C:\Program Files. An access activity model can be used
to identify processes as malicious, or to automatically deny
access to certain resources. As a result, our proposed system
is an anomaly-based (behavior-based) detector for unknown
and known malware, based on monitoring interactions of a
program with persistent OS resources (files, registry).

In some ways, an access activity model is similar to ac-
cess control policies defined by SELinux or the Windows
Group Policy Editor. Both provide policies that define the
acceptable use of resources. However, there is an important
difference. Access control policies define the (minimal set of)
resources needed by individual applications, and hence, they
are program-centric. Our access activity model is a single
policy derived and abstracted from the observation of how a
broad set of diverse applications interact with the operating
system in general. That is, while SELinux-style policies at-
tempt to minimize the damage that a compromised applica-
tion can cause, our policies attempt to distinguish between
malicious and benign applications based on the way they
interact with the OS.

Our experiments show that the access activity model is
successful in identifying a large fraction of malware samples
with a very low false positive rate. With a few minor tweaks
to the model (that are due to incomplete training data),
the false positive rate can be lowered to zero. Of course,
access activity models cannot detect all possible types of
malware. They can only detect cases in which malicious
code attempts to tamper with the binaries or the settings of
other applications or the core OS itself. As our experiments
show, this is true for a large fraction of malware — after
all, malware often attempts to interfere with or modify the
execution of legitimate programs or the OS, or, at the very
least, establish a foothold on the system. However, it is
conceivable that certain kinds of malware do not tamper



with the integrity of the system. For example, one could
imagine a bot that sends spam as long as the machine is
not rebooted. In this case, our policies would need to be
extended to network traffic as well.

To summarize, the contributions of this paper are the fol-
lowing:

e We performed a large scale data collection of system
calls that are invoked by a diverse set of benign appli-
cations under realistic conditions. Our data set con-
tains more than 1.5 billion system calls invoked by 242
different applications that were executed more than
362,000 times.

e We analyzed the diversity of the collected system calls
and explored how system-call-based, program-centric
detectors would perform in light of this data. We con-
clude that simple approaches based on system call se-
quences raise many false positives, and hence, are un-
likely to work in practice.

e We propose a system-centric approach for malware de-
tection. This approach is based on an access activity
model that captures the generalized interactions of be-
nign programs with operating system resources. We
demonstrate that this model characterizes well the op-
erations of benign programs, and it can be used to de-
tect a substantial fraction of malware programs with
very low (or even no) false positives.

In the following Section 2, we describe in more detail our
infrastructure to collect system call data. Then, in Sec-
tion 3, we discuss how we analyzed the data and present
our conclusions about the diversity of the data set. In Sec-
tion 4, we introduce our system-centric detection approach
and demonstrate that it achieves good detection result.

2. SYSTEM CALL DATA COLLECTION

In this section, we discuss our efforts to collect a large
and diverse set of system call traces. Our requirements
are geared towards imposing the least impact on the users
whose machines are part of the data collection effort. Thus,
the data collection framework must have minimal impact on
the performance of those machines, must operate with and
without network connectivity, must ensure that private in-
formation does not leave the user’s machines, and must make
almost no assumptions about the run-time environment. For
example, requiring that users make use of virtual machines
would significantly restrict the practical applicability of our
data collection. Additionally, the data collection framework
must be capable of extracting a rich set of attributes for each
event (i.e., system call) of interest. Unfortunately, none of
the existing system call tracing tools satisfy these require-
ments, so we built and deployed our own data collection
framework.

Our system consists of software agents, which, once in-
stalled on user’s machines, automatically collect, anonymize,
and upload system call logs, and a central data repository,
which receives logs from each machine and normalizes the
data in preparation for further analysis. The software agents
can be installed by users on their own machines and are
mindful of system load, available disk space, and network
connectivity. Furthermore, users can enable and disable the
collection agent as they wish.

Data description. We are interested in performing dif-
ferent types of analyses on the collected data. Thus, the data
elements collected for each system call must allow analyses
along many dimensions. For each system call we collect its
arguments, its result (return) code, the process ID, the pro-
cess name, and the parent process ID. Each log entry is a
tuple (see an example in Figure 1):

(timestamp, program, pid, ppid, system call, args, result)

This data allows us to perform our analyses within a single
process, across multiple executions of the same program, or
across multiple programs.

2.1 Raw Data Collection

The software agent that collects data is a real-time com-
ponent running on each user’s machine. This agent consists
of a data collector and a data anonymizer. We implemented
our agent for Microsoft Windows, as it is the OS targeted the
most by malware. The description in the remainder of this
section provides details specific to the Microsoft Windows
platform. The data collector is a Microsoft Windows kernel
module that traces system call events and annotates them
with additional process information. The data anonymizer
transforms the collected system call data according to pri-
vacy rules and uploads it to the remote, central data repos-
itory.

Kernel collector. The main goal of this component is to
collect system call and process information across the entire
system. In order to intercept and log system call informa-
tion, the kernel data collector hooks the SSDT table [10].
The kernel collector logs information for 79 different sys-
tem calls in five categories: 25 related to files, 23 related to
registries, 25 to processes and threads, one related to net-
working, and five related to memory sections. We selected
the same subset of system calls that are used in Anubis [1],
which covers the relevant operations that manipulate per-
sistent OS resources.

A challenge arises from the fact that the kernel collec-
tor does not necessarily observe the start of a new process.
One reason is that the user can disable and re-enable the
software agent at any point. Another reason is that the
kernel collector is started as the last kernel module in the
system boot process. This means that the kernel collec-
tor might observe system calls that refer to previously ac-
quired resource handles, but without having any information
about which resources those handles point to. As a special
case, some resource handles (e.g., handles to the registry
roots) are automatically provided to a process by the OS
at process-creation time. Consequently, if we log only the
parameters for each individual system call that we observe,
we lose information about previously (or automatically) ac-
quired resources. To address this problem, we query the
open handler table for each process we have not seen before.
This allows the kernel collector to retrieve the open objects
already associated with a new process. We store the path
names of these objects for later use when we intercept a sys-
tem call (such as NtOpenKey) that references a pre-existing
handle.

Log anonymizer. To protect the privacy of our users,
we obfuscate or simply remove arguments of various system



Program System call

Arguments Return value

In

Out

SVCHOST.EXE NtCreateFile
SVCHOST.EXE NtQueryInformationFile 2600,6,0

SVCHOST.EXE NtClose 1004
CLIENT.EXE NtClose 1560
CLIENT.EXE NtCreateNamedPipeFile 2148532480,". .
CLIENT.EXE NtOpenFile 1074790528,". .
firefox.exe NtReleaseSemaphore 404
firefox.exe NtReadFile 780

131208, ". . .\ACGENRAL.DLL",7,0 2600 0

-144573084

.\NamedPipe\...041",3,32 288
.\NamedPipe\...041",3,96 264

O O O ©O O O

Figure 1: Sample system-call log. Due to formatting
timestamp, process ID, and parent process ID fields are

calls before sending the log to the data repository. The ob-
fuscation consists of replacing part or whole of a sensitive
argument value with a randomly-generated value. Every
time a value repeats, it is replaced with the same randomly-
generated value, so that we can recover correlations between
system call arguments. We consider as sensitive all argu-
ments whose values specify non-system paths (e.g., paths
under C:\Documents and Settings are sensitive), all reg-
istry keys below the user-root registry key (HKLM), and all
IP addresses. Furthermore, we remove all buffers read, writ-
ten, sent, or received, thus both providing privacy protection
and reducing the communication to the data repository. The
data repository indexes the logs by the primary MAC ad-
dress of each machine.

Impact on performance. We designed the software agent
to minimize the overhead on users’ activities. The kernel
module collects information only for a small subset of 79
system calls. Log are saved locally and processed out of
band before being sent to the server, when network connec-
tivity is available. Users can turn data collection on and
off, based on their needs. Local logs are uploaded to the
repository when they reach 10 MB in size and logging is
automatically stopped if available disk space drops below
the 100 MB threshold. Each 10 MB portion of the system
call log is compressed using ZIP compression, for an 95%
average reduction in size (from 10 MB to 500 KB). Given
these techniques, we are confident that users were able to
use their computers with the data collector present as they
would normally do, and thus the collected system call logs
are representative of day-to-day usage.

2.2 Data Normalization

The purpose of this component is to process the raw sys-
tem call logs and extract the fully qualified names of the
accessed resources as well as the access type. For files and
directories, the fully qualified name is the absolute path,
while for registry keys, it is the full path from one of the
root keys.

To compute fully qualified resource names, we track for
each process the set of resources open at any given time,
via the corresponding set of OS handles. When a resource
(file or registry key) is accessed relative to another resource
(either opened by the process or opened by the OS auto-
matically for the process), we combine the resource names
to obtain a fully qualified name. Symbolic links are handled
by observing the actual open operation of the target (linked)

constraints, some values are abbreviated and the
not shown.

file. To handle hard links, we include the locations (paths)
of all hard-linked aliases of a file.

Computing the access type (e.g., read, write, or execute)
requires tracking the access operations performed on a re-
source. This is more tricky than expected. When a resource
is acquired by a program (e.g, a file is opened), the program
specifies a desired level of access. This information, however,
is not sufficiently precise for our needs. This is because, of-
ten, programs open files and registry keys at an access level
beyond their needs. For example, a program might open
a file with FULL_ACCESS (i.e., both read and write access),
but afterward, it only reads from the file. Since we are inter-
ested in the actual access type, we track all of the operations
on a resource, and only when the resource is released (on
NtClose), we compute the access type as a union of all op-
erations at all on the resource. If the program performs no
operations on a resource, then we use the initially-requested
access (provided at resource acquisition) as actual access.
This heuristic is used to cope with memory-mapped files. In
fact, with such files, we might not see any read/write oper-
ation at the system call level, although the file is accessed.

In Microsoft Windows, there is no single system call that
starts a new process from a given executable file. In order
to retrieve the execution path and file name, the normal-
izer needs to recognize the NtOpenFile system calls that
belong to the process-creation task. When a process is cre-
ated, the OS executes a set of system calls to allocate re-
sources, load the binary executable, and start the new pro-
cess: NtOpenFile, NtCreateSection with desired executable
access, and NtCreateThread. Consequently, we automat-
ically identify occurrences of this pattern and extract the
executable path and file name.

2.3 Experimental Data Set

We deployed our data collection framework on ten differ-
ent machines, each belonging to a different user, all running
Microsoft Windows XP. The users have different levels of
computing expertise and different computer usage patterns.
Based on use, the machines can be classified as follows: two
were development systems, one was an office system, one
was a production system, four were home PCs, and one was
a computer-lab machine.

Overall we collected 114.5 GB of data, consisting of 1.556
billion of system calls, from 362,600 processes and 242 dis-
tinct applications. 1 provides detailed information for each
machine. Our system collected data from each machine at
an average rate of 8.2 MB/minute, with highly used ma-
chines producing logs at 40 MB/minute and idle machines



Machine (DGaéc; Sy‘zt%; )a lls P(r)czcleg; )e A pplications
1 18.0 285 55.1 90

2 4.5 70 22.4 87

3 5.6 89 17.7 46

4 32.0 491 110.9 41

5 34.0 514 125.6 42

6 14.0 7 2.8 73

7 1.3 19 3.7 49

8 1.2 18 3.0 22

9 1.6 27 8.5 47
10 2.3 36 12.9 26
Total 114.5 1,556 362.6 242

Table 1: Characteristics of our data set.

Time
Machine | Usage Data Logged Total Data rate

(GB) (hours) (days) (MB/minute)
1 office 18.0 12 3 )
2 home 4.5 4 3 6.25
3 home 5.6 3 4 7.7
4 prod. 32.0 12 3 14
5 prod. 34.0 12 3 15
6 lab | 14.0 8 3 1
7 home 1.3 3 2 4
8 home 1.2 3 9 4
9 dev. 1.6 2 ) 6
10 dev. 2.3 2 3 6.4

Table 2: Data rates during collection.

producing 1.5 MB/minute. In 2, we report the logging time
for the ten different machines. For each machine, we show
the machine’s usage profile, the size of data collected, the
total time during which data was actually collected, the time
period between the first log entry and the last log entry, and
the average data rate. For example, the fourth row indi-
cates that machine 4 was a production server that generated
32 GB of system call logs, over a period of 3 days, during
which data collection was active for 12 hours. Our train-
ing data includes every OS task that was executed during
the monitoring period, including software installation and
updates.

3. ANALYSIS OF SYSTEM CALL DATA

The previous section has described the data set of system
call traces that we collected in the wild from ten real-world
users. In this section, we seek to answer the following ques-
tion: “How diverse is the collected system call data?” For
this analysis, we focus on the types of system calls that an ap-
plication invokes, and ignore argument values. The reasons
for this decision are twofold. First, the use of system call
type information as the sole source for modeling application
behavior has a long tradition in the security community. It
dates back at least 15 years to the first anomaly intrusion de-
tection system that proposed to establish a “sense of self” for
Unix processes [9]. As a result, a majority of previously pro-
posed techniques to model the behavior of applications uses
only system call type information, even though the models
and the techniques to extract these models vary.

The second reason for using system call types in our anal-
ysis is that many models proposed for this kind of input
data share common characteristics. Given that the data is
a stream of system call numbers associated with the exe-
cution of a program, there are limits to the ways in which
this data can be modeled. In particular, most models rely
upon characteristic patterns (or sequences) derived from the
observed system calls. As a result, we hope that our anal-
ysis results are valid in a broader context than just for the
specific model(s) that we chose to study.

We analyze the diversity of the system call data in rela-
tionship to a particular model used to capture program be-
haviors. More precisely, we seek to understand how well the
collected system call data can be characterized by a given
model. If the data is diverse, it will be difficult to build a
model that is successful in characterizing the executions of
benign programs. If the data is uniform, then benign pro-
grams behave similarly from the model’s point of view, and
it is easy to capture their executions. That is, we cast the
problem of studying the diversity of our data set as the prob-
lem of understanding whether a model is able to capture the
data in a precise fashion.

For this paper, we decided to use n-grams as the basic
technique to models system calls. The n-gram model is very
popular and has been used as part of many different secu-
rity solutions. For example, n-grams were used to model
program activity to detect software exploits and to identify
malicious code in network payloads. Other examples include
the detection of malware-infected documents and, of course,
the detection of malicious processes based on the invoked
system calls. More complex models are possible, for exam-
ple, those that take into account data flows (taint informa-
tion) between system call arguments. However, collecting
and/or enforcing data flow at end hosts is very challenging,
especially on real machines and with minimal performance
impact. Also, our collected data set does not contain data
flow information.

3.1 Creating n-gram Models

To obtain a set of n-grams for a program, the sequence
of system calls invoked by the running program is scanned
with a sliding window of size n. Each unique sequence of
length n (called an n-gram) is added to the model for this
program. For example, consider that an application invokes
five system calls in the following order: 12,3,17,9,11. In
this case, the 3-gram model for this application would be the
set of triples {< 12,3,17 >, < 3,17,9 >, < 17,9,11 >}. We
use only system call numbers for building n-gram models.
Directly including parameter values in the model is hard
because there is no agreed-upon mechanism to generalize
and model system call parameters.

When generating an n-gram model for malware detection,
we follow a “standard” approach. That is, we first extract
n-gram models for a set of malware programs and a set of be-
nign programs (called the training data). Then, we find all
n-grams that appear in some of the malware models but not
in any of the models built for the benign programs. The in-
tuition is that those n-grams are characteristic for malware,
since they were only seen in the context of the execution of
malicious code.

Using the n-grams that uniquely characterize malware, we
can perform detection. To this end, we monitor the execu-
tion of a process and inspect the sequence of system system
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Figure 2: Unique n-grams for all 242 applications in
our data set.

calls that it invokes. When this sequence contains more
that k instances of n-grams that are considered malicious,
the process is identified as malware.

3.2 Detection Results

To understand the diversity of our collected system call
data set, we performed a number of experiments. First, we
examined the number of unique n-grams that can be found
in each of the 242 different applications that we observe.
Under the assumption that n-grams are a good model to
capture program behavior in general, we would expect that
the number of such unique sequences is low. Otherwise,
every time a new application is introduced, the model will
observe system call sequences that have never been seen be-
fore. Thus, a detector would either raise a false alarm or
miss malicious software that contains such sequences.

The number of unique n-grams for all 242 applications is
shown in Figure 2, sorted in descending order. We can see
that the traces for almost all applications contain unique n-
grams. In fact, new n-grams were found for all but two ap-
plications (small utilities, instdrv.exe and nwiz.exe)! The
y-axis is in logarithmic scale to better demonstrate the long
tail. Interestingly, those applications for which we found the
largest number of unique n-grams are also those that are
frequently used (the top-5 applications were explorer.exe,
svchost.exe, acrotray.exe, firefox.exe, and iexplore
.exe). This finding suggests that n-grams do not closely
relate to benign or malicious behavior; instead, more and
different n-grams are observed simply when more processes
are executed.

We then performed a number of experiments that analyze
the detection capabilities of n-gram-based techniques. For
these experiments, we introduce an additional data set that
captures the execution of 10,838 malware samples. These
samples, taken from recent Anubis [3] submissions, are a
representative mix of current malware programs and contain
worms, bots, and file infectors.

For a particular choice of values for n and k, we ran ten
experiments, one for each of the ten machines in our data
set. More precisely, we use the system call traces from nine
machines and a random selection of two-thirds of the mal-
ware set to train an n-gram model. Then, we use this model

8-grams == Detection Rate

== False Positive Rate
120

100
80
60
40

0

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
3 5 7 9 1L

1 1 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Figure 3: Detection results for 3-gram detector. The
detection threshold k is on the X-axis (e.g., k = 5
means that a system-call trace must match five 3-
grams for an alert). The Y-axis represents the de-
tection and false-positive rates, respectively.

to perform detection on the last third of the malware sam-
ples (to determine the true positives) and the system call
traces taken from the tenth machine (to determine the false
positives). The reported detection results are averaged over
the ten runs (one for each machine).

When computing false positives, we used the number of
different applications as a basis, and not the number of pro-
cesses. That is, when the detector raises alerts for ten pro-
cesses, but all these processes were running the same appli-
cation, we count this as a single false positive. The reasons
for this decision are the following: First, we did not want
to bias the results to the popularity of a certain application
and the number of times that it appears in our data set.
Second, when a detector raises frequent alerts for the same
application, it is easy to white-list this particular program.

We ran experiments with a number of different parameter
settings, varying the length n of the n-grams and the number
k of malicious n-grams that need to be encountered before a
program is classified as malicious. The results for n = 3 and
k ranging over an interval from 1 to 50 are shown in Figure 3.
The results for n = 2 and n = 4 are worse. Figure 4 shows
the detection results for an n-gram-based detector with n =
2, while Figure 5 shows results for n = 4. It can be seen
that for n = 2, detection rates are very poor. The results
for n = 4 are significantly better, but still worse than the
ones for n = 3.

One can see that the detection rates are very high, es-
pecially for small values of k. However, the false positive
rates are very high as well (almost 40% of all benign appli-
cations are reported as malicious). The reason is that the
data set is very diverse. That is, it is common that benign
applications produce system call sequences that match n-
grams that were previously considered to be indicators of
malicious activity. One could lower the false positives by
increasing the threshold k. However, in this case, detection
rates drop significantly as well.

4. SYSTEM-CENTRIC MODELS
AND DETECTION

The results presented in the previous section have shown
that models based on system call sequences (n-grams) have



difficulties in distinguishing normal and malicious behaviors.
The main reason is that system-call sequences invoked by
benign applications are diverse. As a result, a malware de-
tector will likely encounter previously-unseen n-grams when
monitoring benign processes. Unfortunately, the presence of
such n-grams is not a good indication that the code that is
executing is actually malicious. A problem is that while n-
grams might capture well executions of individual programs,
they poorly generalize to other applications. The reason is
that the model is closely tied to the execution(s) of par-
ticular applications; we refer to this as a program-centric
detection approach.

In this section, we propose a model that attempts to ab-
stract from individual program runs and that generalizes
how, in general, benign programs interact with the operat-
ing system. For capturing these interactions, we focus on
the file system and the registry activity of Microsoft Win-
dows processes. More precisely, we record the files and the
registry entries that Windows processes read, write, and ex-
ecute (in case of files only). It is possible to integrate other
kinds of interactions into our model (in particular, the net-
work), but we leave this for future work.

Our model is based on a large number of runs of a diverse
set of applications, and it combines the observations into a
single model that reflects the activities of all programs that
are observed. For this to work, we leverage the fact that
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Figure 4: Detection results for 2-gram detector and
varying settings of k.
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Figure 5: Detection results for 4-gram detector and
varying settings of k.

we see “convergence.” That is, even when we build a model
from a subset of the observed processes, the activity of the
remaining processes fits this model very well. Thus, by look-
ing at program activity from a system-centric view — that
is, by analyzing how benign programs interact with the OS
— we can build a model that captures well the activity of
these programs. Of course, this would not be sufficient by
itself. To be useful, our model must also be able to identify
a reasonably large fraction of malware. To demonstrate that
this is indeed the case, we have performed a number of ex-
periments that are described in more detail in Section 4.3.
Note that it is also possible that program-centric models
converge at one point. However, the results presented in
the previous section indicate that a large amount of data is
needed before this point is reached; more than we collected
in our experiments, and definitely more than previous re-
search has used to demonstrate that system-call-sequence-
based detection works (for a more detailed discussion of the
data examined in previous work, refer to Section 5).

4.1 Creating Access Activity Models

To capture normal (benign) interactions with the file sys-
tem and the Windows registry, we propose access activity
models. An access activity model specifies a set of labels for
operating system resources. In our case, the OS resources
are directories in the file system and sub-keys in the registry
(sub-keys are the equivalent of directories in the file sys-
tem). In the following, we refer to directories and sub-keys
as folders.

Note that we do not specify labels directly on files or reg-
istry entries. The reason for this was that the resulting mod-
els are significantly smaller when looking at folders only. As
a result, the model generation process is faster and “con-
verges” quicker (i.e., less training data is required to build
stable models). Moreover, in almost all cases, the labels for
the folder entries (files or registry keys) would be similar to
the label for that folder itself. Thus, the sacrifice in precision
was minimal.

A label L is a set of access tokens {to,t1,...,tn}. Each
token ¢ is a pair (a,op). The first component a represents
the application that has performed the access, the second
component op represents the operation itself (that is, the
type of access).

In our current system, we refer to applications by name.
In principle, this could be exploited by a malware process
that decides to reuse the name of an existing application
(that has certain privileges). In the future, we could replace
application names by names that include the full path, the
hash of the code that is being executed, or any other mech-
anism that allows us to determine the identity of the ap-
plication that a process belongs to. In addition to specific
application names, we use the star character (*) as a wild-
card to match any application.

The possible values for the operation component of an
access token are read, write, and execute for file-system
resources (directories), and read and write for registry sub-
keys.

Initial access activity model. An initial access activity
model precisely reflects all resource accesses that appear in
the system-call traces of all benign processes that we moni-
tored (we call this data set the training data). Note that for
this, we merge accesses to resources that are found in differ-



ent traces and even on different Windows installations. In
other words, we build a “virtual” file system and registry that
contains the union of the resources accessed in all traces.

Whenever an application proc opens or reads from an
existing file foo in directory C:\path\dir, we insert the di-
rectory dir into our “virtual” file system, including all direc-
tories on the path to dir. When a prefix of the directories
along path already exist in our virtual file system, then these
directories are re-used. All directories that are not already
present (including dir) are added to the virtual file system
tree. Then, we add the access token (proc, read) to the label
associated with dir.

When a process creates or deletes a file in a directory
dir, or when it writes to a file, then we use the operation
write for the access token. Similar considerations apply for
read and write operations that are performed on the registry.
Finally, whenever a binary is executed (loaded by the OS
loader), then we add a token with execute to the directory
that stores this binary.

For example, consider that file C:\dir\foo is read by pA
on machine A, and that file C:\dir\sub\bar is written by
pB on another machine B. Then, the resulting virtual file
system tree would have C:\ as its root node. From there,
we have a link to the directory dir, which in turn has a link
to sub. The label associated with dir is (pA, read), and the
label associated with sub is (pB,write).

Pre-processing. Before model generation can proceed,
there are two additional pre-processing steps that are neces-
sary. First, we need to remove a small set of benign processes
that either read or execute files in many folders. The prob-
lem is that these applications appear in many labels and
could lead to an access activity model that is less tight (re-
strictive) than desirable. We found that such applications
fall into three categories: Microsoft Windows services (such
as Windows Explorer or the command shell) that are used
to browse the file system and launch applications; desktop
indexing programs; and anti-virus software. The number
of different applications that belong to these categories is
likely small enough so that a manually-created white list
could cover them. In our system, we remove all applications
that read or execute files in more than ten percent of the
directories. We found a total of 15 applications that fit this
profile: nine Windows core services, two desktop indexing
applications, and six anti-virus (AV) programs. Identifying
such applications automatically is reasonable, because we
assume that our training data does not contain malicious
code. However, the number of white-listed applications is so
small that the entries can be easily verified manually.

The second pre-processing step is needed to identify appli-
cations that start processes with different names. We con-
sider that two processes with different names belong to the
same application when their executables are located in the
same directory. We have found 14 applications that start
multiple processes with different names. These include well-
known applications such as MS Office, Messenger, Skype,
and RealPlayer. Of course, all Windows programs that are
located in C:\Windows\system32 are also aggregated (into a
single meta-application that we refer to as win_core). Merg-
ing processes that have different names but that ultimately
belong to the same application is useful to create tighter ac-
cess activity models.

Model generalization. Based on the initial access activ-
ity model, we perform a generalization step. This is needed
because we clearly cannot assume that the training data
contains all possible programs that can be installed on a
Windows system, nor do we want to assume that we see
all possible resource accesses of the applications that we ob-
served. Also, the initial model does not contain labels for all
folders (recall that the access is only recorded for the folder
that contains the accessed entity).

The generalization step performs a post-order traversal
of both the virtual file system tree and the virtual registry
tree. Whenever the algorithm visits a node, it performs the
following four steps:

Step 1: First, the algorithm checks the children of the cur-
rent node to determine whether access tokens can be propa-
gated upward in the tree. Intuitively, the idea is that when-
ever we inspect a folder (node) and observe that all its sub-
folders are accessed by a single application only, we assume
that the current folder also belongs to this application.

More formally, the upward propagation rule works as fol-
lows: For each operation op, we examine the labels of all
child nodes and extract the access tokens that are related
to op. This yields a set of access tokens {t1,...,tn}. We
then inspect the applications involved in these accesses (i.e.,
the first component of each token ¢;). When we find that
all accesses were performed by a single application proc, we
add the access token (proc, op) to the current label.

Step 2: The upward propagation rule of Step 1 is used to
identify parts of the file system or the registry that belong
to a single application. However, this is problematic when
considering container folders. A container is typically a di-
rectory that holds many “private” folders of different applica-
tions. A private folder is a folder that is accessed by a single
application only (including all its sub-folders). A well-known
example of a container is the directory C:\Program Files,
which stores the directories of many Windows programs.

Since a container holds folders owned by many different
applications, its label would deny access to all sub-folders
that were not seen during training. This might be more
restrictive than necessary. In particular, we would like to
ensure that whenever an application accesses a previously-
unseen folder in a container, this should be allowed. In-
tuitively, the reason is that this access follows an expected
“pattern,” but the specific folder has not been seen during
training. To handle these cases, we introduce a special flag
that can be set to mark a folder as a container.

The following rule is used to mark a folder as a container:
Similar to before, we examine the labels of all child nodes
and extract the access tokens that are related to each oper-
ation op. We then inspect the set of access tokens that is
extracted {t1,...,¢tn}. When the applications in these ac-
cesses are different, but there is no wildcard present in any
access token, then the folder is marked as container. We
explain the implications of a container flag for detection in
Section 4.2.

Step 3: Next, the access tokens in the label associated with
the current node are merged. To this end, the algorithm
first finds all access tokens that share the same operation
op (second component). Then, it checks their application
names (first components). When all tokens share the same
application name, they are all identical, and we keep a sin-
gle copy. When the application names are different, or one



token contains the wildcard, then the tokens are replaced
by a single token in the form (x,op). Merging is useful to
generalize cases in which we have seen multiple applications
that perform identical operations in a particular folder, and
we assume that other applications (which we have not seen)
are also permitted similar access.

Step 4: Finally, the algorithm adds access tokens that were
likely missed because of the fact that the training data is
not complete. More precisely, for each access token that is
related to a write operation, we check whether there exists a
corresponding read token. That is, for all applications that
have written to a folder, we check whether they have also
performed read operations. If no such token can be found,
we add it to the label. The rationale for this step is that an
application that can write to resources in a folder can very
likely also perform read operations. While it is possible to
configure files and directories for write-only access, this is
very rare. On the other hand, adding read tokens allows
us to avoid false positives in the more frequent case where
we have simply not seen (legitimate) read operations in the
training data.

When the generalization algorithm completes, all nodes in
the virtual file system and the registry tree have a (possibly
empty) label associated with them.

Note that, for building the access activity model, we do
not require any knowledge about malicious processes. That
is, the model is solely built from generalizing observed, good
behavior. This is an advantage compared to the n-gram
model introduced in the previous section, which requires
training traces captured from malware runs to identify those
n-grams that are unique to benign applications.

4.2 Model Enforcement and Detection

Once an access activity model M is built, we can deploy
it in a detector. More precisely, a detector can use M to
check processes that attempt to read, write, or execute files
in directories or that read or write keys from the registry.

The basic detection algorithm is simple. Assume that an
application proc attempts to perform operation op on re-
source r located in \path\dir. We first find the longest pre-
fix P shared between the path to the resource (i.e., \path\dir)
and the folders in the virtual tree stored by M. For exam-
ple, when the virtual file system tree contains the direc-
tory C:\dir\sub\foo and the accessed resource is located
in C:\dir\sub\bar, the longest common prefix P would be
C:\dir\sub. We then retrieve the label Lp associated with
this prefix and check for all access tokens that are related
to operation op (actually, after generalization, there will be
at most one such token, or none). When no token is found,
the model raises an alert. When a token is found, its first
component is compared with proc. When the application
names match or when the first component is *, the access
succeeds. Otherwise, an alert is raised.

The situation is slightly more complicated when the folder
that corresponds to the prefix P is marked as container. In
this case, we have the situation that a process accesses a
sub-folder of a container that was not present in the train-
ing data. For example, this could be a program installed
under C:\Program Files that was not seen during training.
In this case, the access is permitted. Moreover, the model
is dynamically extended with the full path to the resource,
and all new folders receive labels that indicate that applica-
tion proc is its owner. More precisely, we add to each label

access tokens in form of (proc,op) for all operations. This
ensures that from now on, no other process can access these
newly “discovered” folders. This makes sense, because it re-
flects the semantics of a container (which is a folder that
stores sub-folders that are only accessed by their respective
owners).

Whenever an alert is raised, we have several options. It is
possible to simply log the event, deny that particular access,
or terminate the offending process.

4.3 Detection Results

In this section, we evaluate the effectiveness of a detector
based on access activity models. Similar to the analysis for
the n-gram model, we ran ten experiments. More precisely,
for each experiment, we picked one of the machines. We
then used the system call data recorded on the other nine
hosts to generate the access activity model, as described in
the previous section. Finally, we used this model for detec-
tion. For this, we first check the resource accesses performed
by all processes on the machine that was not used for model
generation. Then, we examine the accesses performed by
the malware samples. For each experiment, we evaluate the
detection capabilities and false positives of the file system
model alone, the registry model alone, and both models com-
bined.

File system access activity model. On average, the
file system access activity model contains about 100 labels.
These labels contain tokens that restrict read access to about
70 directories, write access to about 80 directories, and ex-
ecute access to about 30 directories. The results for the file
system model are shown in Table 3. In this table, we see
a number of different columns for the detection rates and
the false positive rates. These are discussed in the following
paragraphs.

When using the original model to check all read, write,
and execute accesses, we see an average detection rate of
66% for the malware samples (column Detection rate) and
a false positive rate of almost 15% (column False positive
rate). Note that, similar to the experiments with the n-
gram models, the false positive rates are computed on the
basis of applications and not processes.

At first glance, the results appear sobering. However, a
closer examination of the result reveals interesting insights.
First, we decided to investigate the false negative rate in
more detail. When looking at the execution traces of the
malware programs, we observed that many samples did not
get far in their execution but quickly exited or crashed. In-
terestingly, a substantial fraction of malicious samples never
wrote to the file system or the registry, and they did not
open any network connections. It is difficult to confirm that
these samples exhibit any malicious activity at all. In fact,
this calls into question the occasionally very high detection
rates of the n-gram-based model, and it further confirms our
previous insight that system call sequences are not closely
related to actual malicious behavior. As a result, we decided
to remove from our malware data sets all samples that never
perform a write operation or open a network connection (or
socket). This decreases our malware data set to 7,847 sam-
ples that exhibit at least some kind of activity. It also im-
proves our detection rate to more than 90%, as can be seen
in column Adjusted detection rate of 3. For the remainder of



Machine | Detection False Adjusted Rates of detected access violations — Detection Final detection
rate positive detection rate (only
rate rate Read Write Ezxecute writes) FP rate Det. rate
1 0.656 0.225 0.906 0.000 0.022 0.222 0.864 0.0 0.864
2 0.657 0.173 0.907 0.000 0.011 0.172 0.902 0.0 0.902
3 0.657 0.154 0.907 0.000 0.130 0.043 0.902 0.0 0.902
4 0.657 0.156 0.907 0.024 0.049 0.122 0.902 0.0 0.902
5 0.657 0.143 0.907 0.024 0.024 0.095 0.902 0.0 0.902
6 0.635 0.242 0.877 0.014 0.055 0.242 0.868 0.0 0.868
7 0.657 0.267 0.907 0.020 0.041 0.265 0.901 0.0 0.901
8 0.657 0.045 0.907 0.000 0.045 0.000 0.902 0.0 0.902
9 0.657 0.025 0.907 0.000 0.025 0.000 0.902 0.0 0.902
10 0.657 0.050 0.907 0.000 0.038 0.038 0.902 0.0 0.902
Average 0.655 0.148 0.904 0.008 0.044 0.137 0.895 0.0 0.895
Table 3: Detection based on our file-system access activity model.
this paper, all reported detection rates are computed based . Fualse D it' FP rate | Final
on the adjusted malware data set. Machine Detedwnpositive ra le (only det.
In the next step, we investigated the false positives in more rate rate ( oMY writes) rate
detail. Table 3 shows the access violations for each machine, writes)
divided into violations due to read (column Read), write 1 0.567 0.063 0.530 0.063 0.521
(column Write), and execute (Ezecute) access attempts. It 2 0.557 0.107 0.540 0.053 0.521
can be seen that execute violations account for a significant 3 0.566 0.179 0.530 0.128 0.062
majority of false positives. However, we also found that 4 0.557 0.000 0.530 0.000 0.540
they are only marginally important for detection. Thus, 5 0.557 0.000 0.530 0.000 0.540
for the next experiment, we decided to use only the access 6 0.557 0.015 0.530 0.000 0.540
tokens that refer to write operations. This is justified by the 7 0.597 0.133 0.530 0.000 0.540
fact that we are most interested in preserving the integrity 8 0.557 0.067 0.530 0.067 0.537
of the operating system resources. The detection results 9 0.561 0.100 0.530 0.025 0.521
for the new write-only detection approach are presented in 10 0.557 0.000 0.530 0.000 0.540
column Detection rate (only writes) of 3. As can be seen, the Average 0.563 0.066 0.530 0.034 0.486

numbers remain high with 89.5%. This confirms that write
access violations are a good indicator for malicious activity.
With this approach, the false positives are identical to the
write violations, which are shown in column Write.

We further examined the reasons for the remaining write
violations. It turned out that these violations were due to
two root causes. One set of false positives was caused by
our own system-call logging component that wrote tempo-
rary files directly into the C:\ directory before sending the
data over the network. The second reasons was due to soft-
ware updates. More precisely, we detected a number of
cases in which an application was writing to its folder in
C:\Program Files. Of course, only this program had read-
/execute access to that directory. However, we never saw a
write access during training, and as a result, the directory
was considered read-only. To accommodate for updates,
we manually added a rule to the model that would grant
write permission to applications that “own” directories in
C:\Program Files. Moreover, we granted our component
write access to C:. With more extensive training, both ac-
cess activities would have very likely been added automati-
cally. The model that incorporated our minor adjustments
generated no more false positives, as shown in column Final
detection/FP rate. However, the detection capabilities of
the model remain basically unchanged, as shown in column
Final detection/det. rate.

Registry access activity model. On average, the reg-
istry access activity model contains about 3,000 labels, sig-
nificantly more than the file-system model. The labels con-

Table 4: Detection based on our registry access ac-
tivity model.

tain tokens that restrict read access to about 1,600 keys and
write access to about 2,800 keys (execute is not defined for
registry keys).

The results for the registry model are shown in 4. The
columns Detection rate and False positive rate show the de-
tection rates and the false positive rate, respectively, for the
original model. It can been seen that both the detection
rate and the false positive rates are lower than for the file
system model. We also examined the detection rate and
the false positive rate when considering only write opera-
tions (columns Det. rate (only writes) and FP rate (only
writes)). Similar to the file system case, the false positive
rate drops significantly; there are five runs in which no false
positives were reported at all. However, the detection rate
remains (relatively) high.

We also examined the cases for which the registry ac-
cess model raises false positives. We found that all reg-
istry write access violations can be attributed to the sub-tree
HKEY_USERS\Software\ Microsoft. While this is an impor-
tant part of the registry that contains a number of security
settings, we wanted to understand the detection capabilities
of a model that permits write access to these keys. To this
end, we added a manual rule to allow writes to this sub-
tree and re-run the experiments on the malware data set.
We see that the model is still effective and achieves a de-
tection rate of over 48% (shown in column Final det. rate



of 4) with no false positives. Considering the significantly
larger size of the registry models compared to the ones for
the file system, we expect that a larger training set would
be required to effectively capture legitimate writes to the
Software\Microsoft sub-tree.

Full access activity model. For the final experiment,
we combined those improved file system and registry mod-
els that yielded zero false positives. The combined detec-
tion rate improves compared to the file system model alone,
but only slightly (between 1% and 2% for all of the ten
runs). The average detection improved from 89.5% to 91%
(of course, with no false positives).

Discussion. When focusing on write operations only, our
access activity model achieves a good detection rate (more
than 90%) with a very low false positive rate. The false
positive rate even drops to zero with minor manual adjust-
ments that compensate for deficiencies in the training data,
while still retaining its detection capabilities. This suggests
that a system-centric approach is suitable for distinguishing
between benign and malicious activity, and it handles well
even applications not seen previously. This is because most
benign applications are written to be good operating system
“citizens” that access and manage resources (files and reg-
istry entries) in the way that they are supposed to. In fact,
as we can observe from our results, out of 242 distinct appli-
cations seen in our experiments, policy violations occurred
only for few, specific classes of programs (system utilities
and AV software). On the other hand, violations of n-gram
models occurred across the board.

Malicious programs frequently violate good behavior, of-
ten because their goals inevitably necessitate tampering with
system binaries, application programs, and registry settings.
Of course, we cannot expect to detect all possible types of
malicious activity. In particular, our detection approach will
fail to identify malware programs that ignore other applica-
tions and the OS (e.g., the malware does not attempt to
hide its presence or to gain control of the OS) and that
carry out malicious operations only over the network. For
these types of malicious code, it will be necessary to include
also network-related policies.

Our system-models can be enforced efficiently. As discuss
in Section 2.1, the data collection overhead of the system call
monitoring component is already very low. Enforcement is
even faster, since no writes (for logging) occur.

S. RELATED WORK

The existing papers most relevant to the our current work
focus on malware detection at the system call and the system
library interfaces. These interfaces best describe the sys-
tem resources manipulated by a program (e.g., files, other
programs, other processes, configuration data, authentica-
tion and authorization information, network communication
channels), making system call-based detectors comparable
to our access activity model.

Malware Detection. Malware detection has looked at
many ways to describe program behavior, and corresponding
models evolved to keep pace with the increasing complexity
of malware. Early detection mechanisms were based on par-
ticular byte sequences in the program binary that were in-
dicative of malware. Over time, obfuscation strategies pur-

sued by malware writers forced detectors to move to regular
expressions over bytes [27], and eventually rendered them
obsolete as byte patterns have little predictive power (i.e.,
they can accurately capture only previously seen malware).
Other models such as byte n-grams [19], system dependen-
cies of the program binary [25], and syntactic sequences of
library calls [29, 22] have been proposed with limited suc-
cess. Because these models have a strong syntactic aspect in
that they capture artifacts of program binary unrelated to
the malicious behavior, malware writers managed to evade
such defenses and produce new, undetected malware. Our
emphasis on a system-centric approach to modeling resource
interactions bypasses such syntactic artifacts.

The software-diversity tactics employed by malware writ-
ers required new detection techniques that could capture
more of the intent of the program and less of the syntactic
characteristics of the program binary. The research efforts
have focused on describing malware in terms of violations
to an information-flow policy. Because it is not feasible for
performance reasons to track system-wide information flows
accurately, the focus shifted on better and better approxima-
tions of the information flow. Bruschi et al. [4] and Kruegel
et al. [17] showed that some classes of obfuscations could
be rendered innocuous by modeling programs according to
their instruction-level control flow, while Christodorescu et
al. [5] and Kinder et al. built obfuscation-resilient detectors
based on instruction-level information flow. Nonetheless, in-
struction sequences are fungible and there are many ways to
implement the same high-level functionality. Detection tech-
niques then raised the bar by capturing information flow at
the level of library calls, as proposed by Kirda et al. [14], sys-
tem calls, as proposed by Kolbitsch et al. [15], Christodor-
escu et al. [6], Martignoni et al. [21], and Stinson et al. [26],
and OS resources, as proposed by Yin et al. [30]. The re-
spective evaluations of each of these techniques shows that as
the models used in detection more closely describe actual OS
resources, the detection rates significantly increase and the
false-positive rates decrease. Unfortunately the library and
system-call interfaces are rich enough that mimicry attacks
are still possible [16, 28]. This observation guided our choice
of system resources as the basic element in our models, dis-
carding any information about the order in which resources
are accessed. Furthermore we focus strictly on system re-
sources that are shared across processes (i.e., files, registry,
network connections) and we ignore single-process resources
such as virtual memory. Beyond proposing a richer, system-
centric model of program behavior, we made a concerted
effort to improve an often overlook evaluation aspect, the
external validity of the experimental settings. This concerns
the number and diversity of benign and malicious programs
used to evaluate a detection technique, as well as the envi-
ronment in which they are exercised (in the case of detectors
that rely on runtime information). For example, Kirda et
al. [14] evaluated their system against 33 malware samples
and 18 benign samples, each samples executed for 30—-60 sec-
onds. Kolbitsch et al. [15] used 563 malware samples and 10
benign samples, executed for up to 5 minutes. Christodor-
escu et al. [6] evaluated 16 malware samples and 6 benign
samples for up to 4 minutes, similar to the test sets used
by Martignoni et al. [21] (7 malware, 6 benign) and to Stin-
son et al. [26] (6 malware, 9 benign). Yin et al., in their
PANORAMA system, evaluated 42 malicious samples and 56
benign ones, for 5 minutes. What is common to all of these



evaluations is that both the numbers of malicious samples
and of benign samples are quite small. On current systems,
regular users often run tens of interactive applications and
hundreds of background processes, casting doubt on the rel-
evance of results obtained from a few benign samples. Fur-
thermore, evaluations in previous work were performed in
virtualized, constrained environments, where interactive ap-
plications were exercised mechanically in ways that do not
necessarily reflect real-life usage. We addressed these limi-
tations by collecting execution traces of benign applications
from actual users, during the course of their normal interac-
tion with their personal systems. We designed our system
to have low overhead and to anonymize all collected infor-
mation, so that the users had no concerns and were not
impacted in their regular use of their machine. The benign
data we collected covered 242 distinct benign applications
ran by ten users in their own environments.

It is worth pointing out the difference between our anomaly-
based malware detection approach and the work by Forrest
et al. [9], which aims to detect attacks against legitimate ap-
plications using models based on system call n-grams. This
difference is subtle but important. Forrest builds one model
for a given application. Only attacks against the specific,
modeled application(s) are detected, and diversity is good
because it makes mimicry attacks harder. In our case, we
build one model for an entire set of applications (all benign
programs). In our model, malware (the attacks in our con-
text) are entirely new programs that we have not seen be-
fore. Diversity among benign programs is bad for our model,
since it makes harder to build a tight model and easier for
malware to mimic benign behavior.

Malware classification. Another research topic that is
closely related to our work is that of classification of large
sets of malware samples. Various models have been pro-
posed, all focusing on system calls or on accesses to sys-
tem resources. Lee and Mody performed classification of
malware samples based on the similarity between sequences
of system calls [18]. Bailey et al. [2] considered similar-
ity between sets of accessed system resources, and Rieck et
al. [23] considered various refinements by abstraction. Bayer
et al. [3] used similarity between resource-based information
flows for classification. All of these papers describe the clas-
sification task applied to large sets of malware (thousands or
tens of thousands), and thus their results are representative.
Yet, because their primary focus was on malware classifica-
tion, it is not clear that the classification features that they
derived are useful in malware detection. A classification fea-
ture (e.g., some particular resource accesses) might well dis-
tinguish botnet M; from botnet Ms, but it might not be able
to distinguish botnet M; from a benign program B. Thus,
our current work is orthogonal to malware-classification.

Access control and domain and type enforcement.
Our system-centric access activity model is related to access-
control mechanisms, and, in particular, to mandatory access
control (MAC) systems. They both define acceptable uses
of resources in a user-independent way via a central policy.
There are numerous implementation of MAC systems, of
which SELinux [20] is currently the most visible. Some MAC
systems have been specifically designed to prevent malware
from running in a system [24, 7], while others can enforce
multi-level security policies. Based on this similarity, the

system-centric model can be converted into a SELinux pol-
icy, for example, and our model-generation technique can be
used as a practical tool to construct SELinux policies.

There is a fundamental distinction between MAC poli-
cies and our system-centric models. While a MAC policy
necessarily enumerates all the programs and the program-
specific rules, a system-centric model is more general in that
it defines confidentiality and integrity rules for all programs.
While it might appear that system-centric models are less re-
strictive, in our experimental evaluation, we observed a very
good match between our models and real-life application ex-
ecutions. Additionally, MAC policy are often deployed to
ensure the confidentiality and integrity of system files, at
the cost of leaving user files poorly (if at all) secured and
in need of additional mechanisms, such as the PinUP tool
proposed by Enck et al. [8], which ties user files to particular
applications. Our system-centric model covers system and
user files, based on the observation that both system pro-
grams and applications satisfy some general ways in which
they use OS resources.

6. CONCLUSIONS

In this paper, we performed an analysis of system call
traces that were collected on ten hosts used by people in
their daily work and pastime activities. Our results demon-
strate that a detector that is based on simple, program-
centric models, such as system-call sequences, faces signif-
icant challenges due to the diverse nature of system calls
invoked by different applications. We also hope that the
study of our collected system call traces could become a ref-
erence point for future work in this domain. In particular,
our results could be used to call into question simple de-
tection proposals that are evaluated on small data sets to
determine false positive rates.

We also proposed a novel approach to capture the activi-
ties of benign programs and to detect certain types of mal-
ware (those tampering with binaries or settings of other ap-
plications or the OS). This approach takes a system-centric
angle and models the way in which a broad set of benign
applications interact with OS resources. More precisely, our
approach builds an access activity model that captures per-
missible read and write operations on files and registry en-
tries. Our experiments demonstrate that this model can dis-
criminate well between malware and legitimate programs.
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