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Abstract

For many years, online criminals have been able to

conduct their illicit activities by masquerading behind

disreputable Internet Service Providers (ISPs). For

example, organizations such as the Russian Business

Network (RBN), Atrivo (a.k.a., Intercage), McColo, and

most recently, the Triple Fiber Network (3FN) operated

with impunity, providing a safe haven for Internet

criminals for their own financial gain. What primarily

sets these ISPs apart from others is the significant

longevity of the malicious activities on their networks

and the apparent lack of action taken in response to

abuse reports. Interestingly, even though the Internet

provides a certain degree of anonymity, such ISPs

fear public attention. Once exposed, rogue networks

often cease their malicious activities quickly, or are

de-peered (disconnected) by their upstream providers.

As a result, the Internet criminals are forced to relocate

their operations.

In this paper, we present FIRE, a novel system

to identify and expose organizations and ISPs that

demonstrate persistent, malicious behavior. The goal is

to isolate the networks that are consistently implicated

in malicious activity from those that are victims of

compromise. To this end, FIRE actively monitors botnet

communication channels, drive-by-download servers,

and phishing web sites. This data is refined and

correlated to quantify the degree of malicious activity

for individual organizations. We present our results in

real-time via the website maliciousnetworks.org. These

results can be used to pinpoint and to track the activ-

ity of rogue organizations, preventing criminals from

establishing strongholds on the Internet. Also, the in-

formation can be compiled into a null-routing blacklist

to immediately halt traffic from malicious networks.

1. Introduction

Anecdotal evidence indicates the existence of Inter-

net companies and service providers that are under the

influence of criminal organizations or knowingly toler-

ate their activities. Such companies typically control a

number of networks with public IP addresses that are

abused for a wide range of malicious activities. One

such activity is offering bullet-proof hosting, a service

that guarantees the availability of hosted resources even

when they are found to be malicious or illegal. These

hosting services are often used for phishing purposes

or for serving exploits and malware. Other malicious

activities involve the sending of spam, hosting scam

pages, or providing a repository for pirated software

and child pornography.

An example of a rogue network that offered bullet-

proof hosting was the Russian Business Network

(RBN), who made headlines in late 2007 [5], [16].

Various sources alleged that the RBN hosted web

sites, exploits, and malware that were responsible for

a significant fraction of online scams and phishing.

Once publicly exposed, the RBN ceased its operations

in St. Petersburg, only to relocate and resume activities

in different networks [10]. More recently, a report ex-

posed Atrivo (Intercage), a US-based company that is

frequently considered to provide hosting for malicious

content [3], [17]. Often referred to as the RBN of

the United States, this company is considered to be

a “dedicated crime hosting firm whose customer base

is composed almost, or perhaps entirely, of criminal

gangs” [13]. Shortly after Atrivo made headlines, two

more rogue networks, known as McColo and the Triple

Fiber Network (3FN), were discovered to be major

hosting providers for malicious content with ties to

cybercrime [1], [2], [18]. Again, public outcry quickly

lead reputable ISPs to severe their peering relationships

with these organizations, cutting them off the Internet.

In this paper, we describe FIRE, a system that

monitors the Internet for rogue networks. We believe

that it is important to expose such networks, for a

number of reasons. First, as the examples of the

Russian Business Network, Atrivo, McColo, and 3FN

demonstrate, criminals fear public attention. As a result

of the increased media coverage, all four networks

had to cease their immediate activity. In many cases,

it is likely that their operations resumed elsewhere.

However, it took some time before the miscreants

could restructure their setup. Thus, by quickly bringing

to light networks that act maliciously, it becomes more

difficult for cyber-criminals to establish a home base.



The second advantage of identifying rogue networks is

the possibility to generate blacklists that can block all

traffic from a netblock, even when certain IPs within

this netblock have not yet acted maliciously. This

approach prevents criminals from cycling through the

available IP space, quickly shifting to a new IP when a

current host is blacklisted. Currently, there are manual

efforts underway to establish blacklists based on the

observation that certain networks are malicious. For

example, Spamhaus maintains the Don’t Route Or Peer

(DROP) list, a collection of networks that they consider

to be controlled entirely by professional spammers.

Spamhaus suggests that traffic from these sources

should simply be dropped, and recommends the use of

this list by tier-1 ISPs and backbone networks. Another

example is the list maintained by EmergingThreats,

which identifies netblocks that are thought to belong to

the Russian Business Network. While such efforts are

beneficial, they are expensive and tedious to maintain.

Moreover, these lists are often incomplete and limited

in scope (for example, limited to spam operations or

the RBN in particular). In contrast, FIRE operates in

an automated fashion, and we aim to capture a broader

range of malicious activity, independent of any a priori

knowledge of criminal organizations.

To identify rogue networks, we rely on a number

of data sources that report the malicious actions of

individual hosts. Some of the data feeds are publicly

available, such as lists of phishing web pages. The

other data originates from our own analysis efforts,

such as a list of hosts that provide botnet com-

mand and control servers and hosts that are found

to exploit browser vulnerabilities. Of course, given

the widespread use of botnets and the large number

of exploited machines, the fact that a host performs

malicious actions is no immediate indication that the

corresponding ISP or netblock is malicious. Instead,

when a host misbehaves, it is possible that attackers

were able to compromise and abuse it for nefarious

purposes. Thus, it is necessary to search the data for

indicators that allow us to distinguish between hosts

under the control of rogue (or grossly negligent) ISPs

and infected machines of organizations that make a

deliberate effort to keep their network clean.

Based on post-processed information obtained from

different data sources, we compute a malscore (ma-

liciousness score) for individual ASNs (Autonomous

System Number). This score quantifies the amount of

recent, malicious activity in a network and serves as

an indicator for the likelihood that an ASN is linked to

cyber-criminals, or at the least, being very negligent in

removing malicious content. Using the malscores, it is

easy to identify the worst offenders on the Internet and

take appropriate actions (such as increasing the public

pressure, breaking peering relationships, or putting

their IP address space on a blacklist). Moreover, we

can track malicious activity over time.

The main contributions of this paper are as follows:

• We analyze a number of data sources to identify

IP addresses of hosts that misbehave in different

ways.

• We present techniques to filter these lists for hosts

that likely belong to rogue ISPs. In particular,

we combine the information from different data

sources to compute a malscore that quantifies the

malicious activities of an autonomous system.

• We show that our system is successful in iden-

tifying a number of rogue ISPs and can assist

legitimate ISPs in cleaning their networks via our

website maliciousnetworks.org.

2. System Overview

The goal of our system is to identify rogue networks.

Thus, we first need to concretize what we consider

to be a rogue network. Unfortunately, this question is

not straightforward to answer. Some service providers

are simply lax when it comes to the content that they

offer, others are victims of remote exploits, and a few

are well-known to blatantly host malicious content.

Thus, the fact that a network is the source of unwanted

activity does not necessarily qualify it immediately as

being malicious.

We consider a rogue network to be a network that is

under the control of cyber-criminals or that knowingly

profits from cooperating with criminals. Of course, it

is difficult to assert such criminal ties without thorough

investigations by law enforcement agencies. Thus, we

have to redefine our notion of rogue networks based

on the activities that are typically associated with such

networks. To this end, we consider a rogue network to

be one in which significant malicious activity occurs.

In addition, this activity lasts for an extended period

of time, regardless of abuse complaints. Our logic

behind this is that rogue networks provide hosting

for malicious content that often remains up for many

days (sometimes even months or years). In contrast,

malicious activity in other networks tends to be more

short-lived due to abuse reporting and honest attempts

to undo the damage.

Given our notion of rogue networks, the basic idea

to identify such networks is to check for the presence

of a large number of long-lived, misbehaving hosts. To

this end, we analyze a number of data sources for IP

addresses that have exhibited malicious behavior for

an extended period of time (the exact extent of this

time span depends on the type of data source and is

discussed later).



3. Data Collection

In this section, we discuss in more detail the three

data sources that we use to identify hosts that likely be-

long to rogue networks. To this end, we first describe,

for each data source, how we obtain the IP addresses

of hosts that are actively engaged in malicious activity.

3.1. Botnet Command and Control Providers

Despite the emergence of peer-to-peer-based bots,

many botnets still rely on centralized command

and control (C&C). For this C&C infrastructure,

botmasters typically set up IRC servers that provide

channels for bots to join, or web servers that can

be periodically polled for new commands. The

functioning of the complete botnet depends on the

availability of these servers. Thus, a botmaster is

interested in hosting his C&C infrastructure on a

network where it is safe from takedown.

To identify and monitor the networks affiliated

with botnet C&C servers, we utilize data collected

from Anubis [4]. Anubis executes Windows-based

malware binaries in a virtual environment and

records file system and registry modifications, process

information, and network communications. We are

particularly interested in the network traffic (if any)

generated by the malware.

IRC-based botnets. When Anubis monitors IRC traf-

fic the corresponding nickname, server, and channel

information is logged. To monitor whether IRC C&C

channels are active, we use a custom IRC client that

leverages the recorded credentials to connect to the

IRC server and join the channel. Because we are

primarily interested in the longevity of the C&C server,

we resolve the C&C server’s host name to one or more

IP addresses, and then connect to each IP at regular

intervals. When the C&C server is not identified by a

DNS name but by an IP address, then this address is

used directly. A host (an IP address) is considered to

be active when our client can join the corresponding

C&C channel. Sometimes, transient network problems

prevent us from connecting to a host. In such cases,

it would be undesirable and premature to declare a

host as inactive. Thus, we require that an active C&C

channel is unreachable for two days before declaring

the corresponding IP address as inactive.

Interestingly, in a number of cases, we observed that

a channel (and the corresponding server) was reach-

able, but no malicious activity was noticeable. This

is frequently the case when a bot channel is created

on a well-known IRC network (such as undernet or

efnet). The reason is that the IRC administrators of

these networks quickly ban the botmaster and remove

the channel. However, subsequent logins from bots or

other users reopen the channel, thus making the chan-

nel available and leaving the impression that it is still

active. To mitigate this problem, we modify our ap-

proach to determine whether a botnet C&C host is ac-

tive. More precisely, in addition to the requirement that

a server is reachable and the appropriate channel exists,

we also require that the channel shows bot-related

activity. To this end, we introduce heuristics that check

the messages and channel topics for well-known IRC

bot commands (such as download, update, dos) and

signs of encoded or encrypted commands. A channel

is considered up only when such indicators are present.

HTTP-based botnets. To identify and monitor web-

based botnet C&C servers from samples collected by

Anubis, we first require a mechanism to distinguish

between legitimate HTTP traffic and traffic related

to botnet commands. This is necessary because

HTTP traffic sent by a malware sample does not

immediately imply a connection to a C&C server

(HTTP connections are often used to check for

network connectivity or download updates). To

identify HTTP C&C traffic, we manually define static,

malicious characteristics (signatures) of requests used

by well-known botnets. These characteristics include

content from the HTTP request path and parameters,

HTTP headers and POST data, and the HTTP response

from the web server. Such static features are useful

even for botnets that use encryption because they

frequently send an encryption key, bot identifier,

version number, and other parameters to the web

server. Thus, the HTTP C&C server must know how

to parse the request in a specific format.

As an example of a web-based botnet that we have

been monitoring, consider Pushdo/Cutwail, which is

believed to be one of the largest, active botnets used

for spam. When a Cutwail bot connects to the C&C

server, it will often request one or more executables.

Although the botnet utilizes encryption, the request

path for these binaries contains a predictable semi-

static format, such as the prefix /40E8. The response

from the web server contains one or more executables

typically around 100KB. Currently, we are monitoring

24 different types of web-based botnets including

Coreflood, Torpig, and Koobface.

3.2. Drive-by-Download Hosting Providers

Our second data source is a list of servers that

host malware executables distributed through drive-by-

download exploits. Drive-by-downloads are a means

of malware distribution where executables are auto-

matically installed on victim machines without user

interaction. Typically, the only requirement is for a



user to visit a web page that contains an exploit for her

vulnerable browser. In some cases, the exploit and the

malware executable is hosted on a compromised host,

while in other cases, a compromised web page is only

used to redirect the victim to a second machine that

performs the exploit (often referred to as a mothership).

These mothership servers are frequently located in

rogue networks.

There are three data feeds that we use to identify

drive-by-download servers. The first feed is through

Wepawet [25], a system that checks user-submitted

web pages (URLs) for malicious Javascript. In partic-

ular, we are interested in cases where malicious script

contains shellcode that downloads and executes mal-

ware. When malware is discovered, Wepawet records

the locations of these binaries and exports them to

FIRE. The second data feed is through a daily compi-

lation of URLs found in spam mails that are caught

in the spam traps of a computer security company

and an Internet Service Provider. The third feed is a

daily-updated list of “spamvertised” URLs (advertised

via spam) provided by Spamcop [23]. So far, after

eliminating duplicates, we have recorded more than 1.2

million spamvertised links. Of course, not every URL

in a spam email points to a site that launches a drive-by

exploit. Instead, these URLs frequently lead to shady

businesses such as online pharmacies, casinos, or adult

services. To identify those sites and pages that actively

perform drive-by-exploits, we use the Capture Honey

Pot Client (HPC) [21]. Capture is able to find web-

based exploits by opening a potentially malicious web

site in a browser on a virtual machine. After visiting a

page, the state of the virtual machine is inspected and

suspicious changes (i.e., the creation of new files or

the spawning of new processes) are recorded, as they

indicate that the guest system was compromised by a

web-based exploit.

For our analysis, we use a total of eight virtual

machines (VMs) dedicated to scanning web pages.

All VM images are running Windows XP Professional

(Service Pack 2), without any patches installed and

automatic updates disabled. To catch recent exploits,

we have installed the Flash and Quicktime plug-ins.

When the Capture honey client is compromised by

visiting a certain URL, we inspect the network traces

recorded from Capture HPC. We are not interested in

the server that hosts the web site that contains an ex-

ploit. We have observed that those machines are often

legitimate web servers that are victims of compromise

and, therefore, do not yield much information about

malicious networks. Thus, if the malicious binary that

is part of an exploit is downloaded from the same

server, we ignore that host for our analysis. In the more

interesting case, an exploit has been injected into a web

page and the associated binary is hosted on a different

machine (mothership server that usually serves binaries

for many different exploits). Due to the importance of

this mothership servers for the criminals behind the

exploit, these machines are often located in malicious

networks where the chance that it is being shut down

is low. Thus, we only consider the IP addresses of

those mothership servers for our analysis. Once we

have discovered a download server, we revisit it once

per day.

3.3. Phish Hosting Providers

The third data source to identify rogue networks

is derived from information about servers that host

phishing pages. Typically, phishing pages are set up to

steal login credentials, credit card numbers, or other

personal information. Often, these pages are hosted on

compromised servers and are taken down quickly. To

mitigate this problem, phishers often resort to hosting

their phishing pages directly in networks where there

is little or no control of the offered content.

To locate phishing pages, we leverage an XML feed

provided by PhishTank [19]. Once a day, this feed

provides our system with URLs of phishing pages that

are verified by the PhishTank community. Interestingly,

all URLs on the PhishTank list are considered to be

online. However, our experiments have shown that

phishing pages are often taken offline so quickly that

the list is already outdated after one day.

To compute the status of phishing IPs, we attempt

to download the web page located at a given phishing

URL once per day. This is done until either the

domain (of the URL) can no longer be resolved, or

the site is offline for more than one week. A phishing

site is considered offline by our system when the web

server is not reachable anymore or when the phishing

page has been replaced by another page that is not a

phish (usually a HTTP 404 error page or a phishing

warning page).

4. Data Analysis

In this section, we discuss our techniques to identify

rogue networks and compute their malscores based on

the analysis of the individual data sets that we collect.

4.1. Longevity of Malicious IP Addresses

The primary characteristic that distinguishes be-

tween rogue and legitimate networks is the longevity

of the malicious services. Most legitimate networks are

able to clean up illicit content within a matter of days.

In contrast, we have observed malicious content that



has been online for the entire monitoring period of

more than a year. Figure 1 shows the average uptime

of malicious IPs per ASN. It can be seen that the vast

majority of networks remove the offending content in

less than ten days. However, there were 361 ASNs

that had hosts with an average lifespan of more than

ten days in our feeds. Also, we discovered that each

type of malicious activity displays different behaviors

and average uptime.

Since May 2008, we have observed botnet C&C

servers on 1,269 IP addresses. Figure 2 displays the

uptime of the botnet C&C servers from 0-60 days.

Note that we observed C&C servers that were online

for more than 60 days, but limited the x-range of the

graph to illustrate the rapid decline in botnet C&C

servers that are taken down after only a few days,

mainly by reputable IRC and web hosting providers.

We have been monitoring 1,161 of drive-by-

download servers since August 2008. These servers

have a much higher average lifetime than the other

sources depicted in Figure 3. In fact, the number of

drive-by-download servers that have been online for

more than 60 days is 92, or more than 15%. Also,

there have been 17 (approximately 3% of all) drive-

by-download servers that have been online since the

start of our collection.

From July 2008, we recorded 12,149 IP addresses

hosting phishing websites. Similar to botnet C&C

servers, the majority of phishing websites were online

for only a few days. However, we also observed a few

phishing sites that were online for more than a year.

Figure 4 shows the uptime for the first 60 days for

phishing hosts.

As mentioned previously, we use the longevity of

malicious services as a distinguishing feature of rogue

networks. This insight is supported by the previously-

shown data, which demonstrates that a small number

of ASNs is responsible for most persistent, malicious

activity. To discard IPs that have been active for a short

time only, we introduce a threshold δ. IP addresses that

are active less than this threshold are not considered

rogue and discarded from the subsequent malscore

computation. This removes most of the phishing pages

that are hosted on free web spaces or hacked machines,

and legitimate IRC/web servers that are temporarily

abused for botnet communications. As we will explain

later in more detail (in Section 5.2), we do not use

a threshold-based filter for drive-by-download servers.

The reason is that such servers are difficult to set up,

and thus, are typically a direct indication for rogue

networks. This is also reflected in the uptime graph

for drive-by download servers (Figure 3), which is

different than the graphs for the other two data sources.

The output of the filtering step (which removes

short-lived botnet C&C and phishing IPs) is a list of ac-

tive, rogue IPs that constitute the input to the malicious

score computation process, which is discussed in the

next section. In Section 5.2, we will come back to the

effects of selecting different values for the threshold δ

on malscores and ASN ranks.

4.2. Malscore Computation

Once per day, the data collection process produces

three lists Li of active, rogue IPs (each derived from a

different data source i). In the next step, the goal is to

combine this information to expose organizations that

act maliciously. For this, we consider an organization

to be equivalent with an autonomous system (AS).

An autonomous system is a group of a single entity

(RFC 1771). Thus, it is a natural choice to perform

analysis at the AS-level.

To identify those autonomous systems that are most

likely malicious, we first map all IP addresses on the

three lists to their corresponding ASN. For this, we

query the whois database, selecting the most specific

entry for an IP address in case multiple autonomous

systems announce a particular IP. We are aware that

the whois data might not be completely accurate.

However, even in case of small errors, the database

is sufficiently complete and precise to recognize the

worst offenders.

A straightforward approach to identify those au-

tonomous systems that are most malicious is to com-

pute, for each AS, the sum of the IPs on the three lists

that belong to this AS. While simple, this technique is

not desirable because it ignores the size of a network.

Clearly, when an AS P controls many more live hosts

than AS Q, we can expect that the absolute number

of malicious hosts in P are higher than in Q, even

though the relative numbers might show the opposite.

To avoid this pitfall, we compute the maliciousness

score (malscore) MA for an AS P as follows:

MP = ρP ∗
3∑

i=1

ni(P ) (1)

In Equation 1, ni(P ) is the number of IP addresses

on list Li that belong to the autonomous system P .

Moreover, the malscore for each AS is adjusted by a

factor ρ, which is indirectly proportional to the number

of hosts in a network. That is, ρ decreases for larger

networks.

The purpose of ρ is to put into relation the number

of incidents with the number of active hosts in an

autonomous system. This requires, for each AS, the

knowledge of the number of live (active) hosts that
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Figure 1: Average IP uptime by ASN.
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Figure 2: Botnet uptime between 0-60 days.
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Figure 3: Drive-by uptime between 0-60 days.
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Figure 4: Phishing uptime between 0-60 days.

are operating in the networks of this AS. Clearly, this

knowledge is difficult to obtain precisely, and it also

can change over the course of several months. Previous

work attempted to address this question [20], resorting

to the idea of sending ping probes to a well-chosen

subset of the IP addresses of a network. While these

techniques can discriminate well between completely

inactive (dark) regions and used networks, it is still

quite difficult to determine the exact number of active

hosts. Also, it is possible that networks are configured

so that they do not respond to ping requests at all,

thereby skewing the results. For these reasons, we

decided to estimate the size of a network based on the

size of the networks (i.e., the number of IP addresses)

that an AS announces as routeable to the global

Internet. To determine the size of the address space

that an AS announces to the Internet, we leverage data

provided by the Cooperative Association for Internet

Data Analysis (CAIDA). CAIDA is a collaborative

undertaking among organizations in the commercial,

government, and research sectors that promotes coop-

eration in the engineering and maintenance of a robust,

scalable, global Internet. In this role, CAIDA makes

available a variety of data repositories that provide

up-to-date measurements of the Internet infrastructure.

One of these data repositories [14] shows a ranking

of autonomous systems based on the size of their

customer cones (address spaces). This information is

compiled from RouteViews BGP tables.

We define sizep as the number of /20 prefixes that

an AS P announces. With this, we define ρ as shown in

Equation 2 below. As desired, ρ decreases when sizep

increases.

ρp = 2−sizep/c, where c = 4 (2)

Of course, we are aware of the fact that the an-

nounced address space is not a perfectly reliable in-

dicator for the number of active hosts. For example,

there are network telescopes or educational institutions

such as MIT that announce huge address ranges while

having few or no live hosts. However, such networks

are infrequent and, given the shortage of available

IPv4 address space, many networks densely populate

their available space. On the other hand, masquerading

(network address translation - NAT) might result in

multiple hosts sharing a singe IP address. Because

of the imprecision that is inherent in estimating the

number of active hosts, we limit the impact of size

on ρ by a parameter c. Empirically, we found that a

value of c = 4 yields good results. In Section 5.2,

we motivate this choice and discuss the influence of

different values of c on our results.

5. Evaluation

In this section, we analyze the quality of our results.

Moreover, we discuss in more detail the choice of im-

portant system parameters (such as the time threshold

δ and size parameter c).



5.1. Analysis Results and Malicious Networks

Table 1 shows a snapshot of our system on June 1st,

2009, listing the ten entries with the largest malscores

and the originating country (using the ip2location.com

database). For this snapshot, we computed the mali-

ciousness scores for all 417 autonomous systems that

control at least one active, rogue IP.

Unfortunately, we do not have ground truth available

that would allows us to evaluate the results of our sys-

tem in a quantitative fashion. In fact, if such informa-

tion would be available, then there would be no need

for our system. Thus, we can only argue qualitatively

that our system produces meaningful and interesting

insights into the behavior of rogue networks.

Correctness of results. The top ten autonomous sys-

tems reported by FIRE on June 1st host a large number

of persistent, malicious servers. In an attempt to con-

firm that our results are correct and meaningful, we

leveraged a number of third party efforts that attempt

to track down certain types of malicious activity on

the Internet. More precisely, we first obtained a top-25

list, complied by the ShadowServer Foundation [22],

that shows the most malicious networks with regards

to botnet activity. Then, we looked at Google’s Safe

Browsing initiative [15] and extracted the top 150

ASNs, based on the absolute numbers of malicious

drive-by servers that Google identified. In addition, we

used the top-10 entries provided by ZeusTracker [26],

a network that monitors and lists command and control

servers for the Zeus botnet. Finally, we searched a

number of blogs written by well-known security re-

searchers for references to malicious and rogue ISPs

and networks.

For each of our top ten entries, we then tried to

find evidence in any of the third party lists that would

confirm that a network is known to be rogue, or at least,

strongly linked to certain malicious activities. Table 1

shows that we were successful for all ten entries.

In our list, IPNAP-ES (GigeNET) has consistently

ranked among the top malicious networks, because it

hosts the largest numbers of IRC botnet C&C servers.

This is confirmed by the findings of ShadowServer.

Some security forums have actually reported botnet

activity from IPNAP as early as 2006. The Petersburg

Internet Network (PIN), currently ranked second in

Table 1, is known to be hosting the Zeus malware kit

(also known as Zbot and WSNPoem).

It is also interesting to note that the “Novikov Alek-

sandr Leonidovich” AS has been linked to the recent

Beladen drive-by-download exploit campaign [12],

which is believed to be run by the same criminals that

operated the Russian Business Network.

Completeness of results. In addition to checking our

own top entries and comparing them to information

from third parties, we also decided to analyze the

top entries that these third parties have listed. This

might allow us to find malicious networks that our

analysis missed. In many cases, we found that ma-

licious networks in those lists were also identified

and prominently listed by FIRE (although, of course,

not always in the top ten). This is especially true for

Google’s Safe Browsing list.

For the remaining entries that did not overlap with

our results, we found that they mainly fit into two

categories. In the first category, we find many large

networks that were given an unfair bias in these lists

due to the number of compromised hosts on their

network. This includes large ISPs such as Cogent.

We tagged these large networks with an X in each

table to show that they are likely false positives. The

second category consists of reputable networks that

provide web and IRC hosting services (e.g., EUnet

Finland hosts an IRC server for EFnet or FDCservers)

with very short-lived malicious servers. That is, these

networks just happen to be listed because they were

under attack on a certain day, but they drop out quickly

once the hosts or services are cleaned up. Thus, we

believe that our results clearly show the importance

of filtering ASNs by size and IP address longevity

to accurately identify rogue networks while removing

false positives.

5.2. Sensitivity of Important Parameters

Longevity thresholds. To distinguish between rogue

and benign networks, FIRE uses thresholds δ based

on the longevity of a malicious server. If a malicious

host is online/active longer than this threshold, the IP is

considered malicious. If a host is taken offline before it

reaches the threshold, FIRE discards the corresponding

IP for the malscore computation. The choices of the

thresholds is thus important for the correctness of

the analysis. If a threshold is selected too low, many

compromised (but benign) hosts would be considered

part of malicious networks. If the threshold is chosen

too high, true malicious servers will be missed.

To quantify the influence of different thresholds on

the results produced by FIRE, we introduce a simple

distance metric between two rankings (i.e., lists of

malicious networks sorted by malscore). This metric

works by computing the edit distance between the two

rankings A and B; that is, the distance between A and

B is the number of insertions and deletions of ASNs

that are needed to “convert” the ranking A into B.

We then add to this value the number of those ASNs



Rank ASN Name Country Score ShadowServer Google ZeusTracker Blogs

1 AS23522 GigeNET US 42.4 1 - -

2 AS44050 Petersburg Internet Network UK 28.0 - - 6 [9]

3 AS3595 Global Net Access US 18.2 - 23 -

4 AS41665 National Hosting Provider ES 16.5 - 104 5

5 AS8206 JUNIKNET LV 14.1 - 30 -

6 AS48031 Novikov Aleksandr Leonidovich UA 14.0 - - - [12]

7 AS16265 LEASEWEB NL 13.0 24 14 -

8 AS27715 LocaWeb Ltda BR 11.6 - 130 -

9 AS22576 Layered Technologies US 11.5 - 64 - [8]

10 AS16276 OVH OVH FR 10.6 25 18 -

Table 1: FIRE Top 10 for June 1st, 2009

ShadowServer Botnet C&Cs Google Safe Browsing

ASN Name FIRE Large ASN Name FIRE Large
Rank Network Rank Network

AS23522 GigeNET 1 AS4134 Chinanet Backbone No.31 17 X

AS3265 XS4ALL 118 X AS21844 ThePlanet.com 13

AS25761 Staminus Comm - AS4837 China169 Backbone 90 X

AS30058 FDCservers.net - AS36351 SoftLayer Technologies 30

AS174 Cogent 148 X AS26496 GoDaddy.com 15 X

AS2108 Croatian Research - AS41075 ATW Internet Kft. 23

AS31800 DALnet - X AS4812 Chinanet-SH-AP Telecom 89 X

AS13301 Unitedcolo.de 86 AS10929 Netelligent Hosting 12

AS790 EUnet Finland - AS28753 Netdirect 11

AS35908 SWIFT Ventures 68 AS8560 1&1 Internet AG - X

Table 2: ShadowServer Botnets / Google Safe Browsing Top 10 for June 1st, 2009

that appear in both rankings but that have a different

number of rogue IPs.

We used our metric to understand the influence of

different threshold values on the result. To this end,

we first calculated a ranking for a small threshold

value. Then, we iteratively increased the threshold by

a small value, recalculating the rankings at each step.

Finally, we compare the rankings between each pair of

subsequent steps. The idea is to see whether rankings

eventually “stabilize,” or whether they continuously

fluctuate, depending on the specific values for δ.

We applied our analysis to all three data sources,

ranging the threshold δ from 0 to 9. This was done

for each day since January 1st, 2009, and the results

were averaged. Figure 5 shows the results. Figures 5a

and 5b indicate that for phishing servers and botnet

control servers, there is significant fluctuation when

threshold values are low. This is a direct result of the

fact that these data sources contain many compromised

servers that are taken offline after only one or two days

by vigilant ISPs. Thus, we select the thresholds in a

way that such compromised (but benign) servers are

ignored. An ideal threshold value should be chosen

high enough that the spikes at the beginning of both

graphs are cut off, and the fluctuations around the

threshold should be low. Thus, a threshold value that

lies to the right of the initial peak in the curve is a

good choice. Consequently, FIRE uses thresholds of

δphish = 3 and δbot = 4.

For drive-by-download servers, we did not observe

a stabilizing effect over time. On the contrary, Fig-

ure 5c shows a constant fluctuation. The reason is

that most drive-by-download servers are not taken

offline quickly. These servers are typically deployed by

professional criminal organizations who do not want

to risk that their exploits fail because the mothership

server is taken offline. Thus, such servers are predom-

inantly deployed in rogue networks. As a result, we do

not take the uptime of drive-by-download servers into

account when computing malscores.

Size parameter. As mentioned previously, FIRE de-

creases the malscores of large networks. This is to

compensate for the fact that, due to their size, big-

ger networks are more likely to contain a significant

number of rogue IPs. The extent to which the score

of larger networks is decreased is influenced by the

parameter c.

To show the effect of different choices for the

parameter c, we calculated the rankings for varying

values of this parameter. Again, we use the metric

presented previously to quantify how changes of c

influence the rankings. These result are shown in

Figure 6. It can be seen that for c values (much)

less than 1, the overall rank changes are small. This

is due to the fact that, with small values for c, the

resulting lists are dominated by ASN size, regardless

of the number of incidents. Similarly, for c values much
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Figure 5: Ranking changes for varying thresholds.

greater than 1, the rankings are dominated by incident

count, regardless of the size of a network.

For our analysis, it is thus important to choose a

value for c that is located on the right side of the

peak shown in the graph, as we want to favor incident

count over network size. However, we are interested

in a value for c that has some effect and, in particular,

reduces the rank of very large networks (such as tier-1

ISPs and backbone networks). This lead to the choice

of the threshold c = 4 for our malscore computation.
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Figure 6: Sensitivity of parameter c.

6. Related Work

The work closest to ours are efforts that attempt

to assign a reputation to networks or an individual

IP address. In its simplest form, these efforts produce

blacklists of IPs that have been observed to perform

malicious actions. Most often, such blacklists are used

to filter spam mails [23], [24], but there are also black-

lists that warn users when they visit potentially harmful

web pages [11], [19]. Many of the sites that offer

blacklists also compile statistics of the worst offenders,

typically by counting the number of incidents in a

network. Unfortunately, this technique does not dis-

tinguish between compromised, bot-infected machines

and hosts in networks that are deliberately malicious.

As a result, the worst offenders are typically large

networks with many customers. The goal of our work,

on the other hand, is to discard the large amounts

of compromised machines and identify those (often

smaller) networks likely controlled by determined ad-

versaries.

We are aware of two recent papers [6], [7] that

look at temporal and spatial properties of attack

sources. In [6], the authors study the spatial-temporal

characteristics of malicious sources on the Internet,

using data from the DShield.org project. The

conclusion is that 20% of all IPs are responsible for

80% of the observed attacks. In [7], the authors attempt

to find IPs that are clustered (spatial uncleanliness) and

persistent (temporal uncleanliness) in sending spam

mails, launching network scans, and hosting phishing

pages. This work is closest to ours in that the behavior

of hosts is used to identify “unclean” (infected)

netblocks. The difference to our approach is twofold:

First, we attempt to identify networks that are operated

by criminals, while their work was focusing on finding

bot infections. As a result, the selection of the input

data sets (we include drive-by download providers and

botnet C&C servers, but do not consider scanning) and

the filtering techniques are different. Moreover, we

combine results from multiple feeds. Such correlation

efforts were not part of the previous paper.

7. Conclusions

In this paper, we presented FIRE, a novel system

to automatically identify and expose organizations and

ISPs that demonstrate persistent, malicious behavior.

FIRE can help isolate networks that tolerate and aid

miscreants in conducting malicious activity on the In-

ternet. It does this by actively monitoring different data

sources such as botnet communication channels, drive-

by-download servers, and feeds from phishing web

sites. Because it is important to distinguish between

networks that are knowingly malicious and networks

that are victims of compromise, we refine the collected



data and correlate it to deduce the level of malicious-

ness for the identified networks. Our ultimate aim is

to automatically generate results that can be used to

pinpoint and track organizations that support Internet

miscreants and to help report and prevent criminal

activity. Furthermore, the networks we identify can

also be used by ISPs as blacklists in order to simply

block traffic that is originating from them. Hence,

an ISP can enhance the security of its users by not

allowing malicious traffic to reach them.
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